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SUMMARY 

A. Context  

Magnified climate change in the polar regions predicted by global circulation models 

may have a profound impact on terrestrial and aquatic ecosystems in Antarctica and 

Sub-Antarctica. Polar lacustrine ecosystems appear to be particularly responsive to 

climate changes. In high latitude lakes, eukaryote and bacterial microorganisms are the 

main sources of primary production and elemental cycling. These ecosystem functions 

are frequently concentrated in microbial mats growing in the illuminated benthic zone 

due to the combined effects of low nutrient content and relative stable water-columns 

caused by prolonged periods of ice cover. Changes in these environmental conditions 

can provoke pronounced shifts in community structure. As such, lacustrine microbiomes 

are especially relevant as early warning systems of environmental stress induced by 

climate change and anthropogenic impacts. However, this requires integration of data 

on their diversity, biogeographic zoning and evolutionary history with information on 

their functional attributes underlying their response and resilience to environmental 

change.  

In macroscopic organisms, three main biogeographic regions are traditionally 

recognized (i.e. sub-Antarctica, Maritime Antarctica and Continental Antarctica). This 

observation suggests an ancient and common biogeographic and evolutionary origin of 

the terrestrial and freshwater biota in the southern hemisphere. In contrast to 

macroscopic organisms, however, relatively little is known on the biodiversity, 

biogeographic distribution patterns and functional potential of microbial taxa, largely 

due to the technological difficulties associated with studying the vast diversity of 

microorganisms and the large number of (characterized) samples required to cover the 

whole Antarctic Realm (AR). 

In the last two decennia, the advent of high throughput sequencing (HTS) has marked an 

important turning point in the study of microbial biodiversity. HTS of taxonomic marker 

genes results in a high amount of sequences, including those of rare taxa, at a relative 

low effort and cost per sequence. Bioinformatic tools have also been developed to 

detect and try to correct potential artifacts that could create spurious taxonomic units 

and inflate the biodiversity. 

In the Antarctic Realm (AR), it is becoming evident that, similar to multicellular taxa, 

endemism among microorganisms does exist and the Southern Ocean thus acted as an 

efficient dispersal barrier for most microbes. Formal tests of bioregionalization patterns 

in microbial organisms in the AR are however still lacking due to the paucity of region-

wide taxonomic inventories using a standardized sampling and taxonomic identification 

strategy. 

Recently, the Antarctic Peninsula and Continental Antarctica have been subdivided into 

16 biologically distinct smaller regions, based on physical parameters of ice-free areas, 
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expert consultation, and multivariate analyses on occurrence patterns in macro-

organisms. Named “Antarctic Conservation Biogeographic Regions” (ACBRs), these 

zones provide an important tool for conservation, management and policy. However, 

microbes were poorly integrated in this framework due to the limited availability of high 

resolution and spatially extensive data. It therefore remains unclear to what degree 

microbial communities differ between ACBRs and if the latter could also be used to 

conserve the unique microbial assemblages. In addition, testing the hypothesis that 

microbes show a high level of provincialism, comparable to that observed in 

multicellular biota in the AR, would provide further significant insights into the common 

evolutionary origin and history of Antarctic biota. 

An unexpected opportunity for the CCAMBIO project was the possibility to include 

samples from 85 Arctic lakes (Greenland, Svalbard and Northern Norway). While both 

Polar Regions are characterized by similar climatic features, they have a different 

tectonic history and contrasting levels of isolation to neighboring land masses. Their 

particular evolutionary history has thus led to biological differences between habitats in 

Antarctica and their comparable counterparts in the Arctic. Therefore, it appeared 

interesting to test whether interhemispheric differences could be observed in microbial 

diversity and microbial biogeographic patterns. 

 

B. Objectives 

The overall objective of CCAMBIO was to study the diversity, biogeographic zoning, 

evolutionary history, and genomic make-up of lacustrine microbial mat communities in 

the Antarctic Realm (AR) in order to assess their resilience and local and regional 

responses to global change. The specific objectives were: 

 

1.  To extend and improve existing sample collections of lacustrine microbial 

communities by conducting field campaigns in understudied regions. 

2.  To quantify the degree and nature of microbial bioregionalisation in the AR using 

in-depth inventories of microbial biodiversity (cyanobacteria, bacteria, and protists) 

based on state-of-the-art techniques, including HTS, microscopy and analysis of 

biogeochemical markers along major geographical, climatic and environmental 

gradients. Biomass partitioning among the major groups of photosynthetic 

microorganisms was performed using high performance liquid chromatography 

(HPLC) of photosynthetic pigments. This was complemented by in depth analyses 

of microbial community composition using HTS analyses of the 16S or 18S rRNA 

genes for cyanobacteria, bacteria and microeukaryotes, which were processed 

using custom-made bioinformatic pipelines that were validated using laboratory-

generated communities. 
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3.  To test evolutionary hypotheses on the origin, diversification rate and range 

dynamics of selected taxa. For a selection of taxa, multi-gene molecular 

phylogenies were developed to study their diversity and evolutionary history 

within the AR. Due to problems in primer design, this work was replaced by 

genome sequencing for cyanobacteria.  

4.  To study the overall genomic make-up and biochemical properties of a selected 

microbial mat community along a depth gradient to assess the contribution of the 

different taxonomic/functional groups to the functioning of the consortium in 

response to differences in lake water depth and the light climate. Functional data 

of microbial communities were obtained by a metagenomic inventory.  

5.  To explore the potential of microorganisms and functional genes/groups as early 

warning indicators for global change through modelling the distribution of focal 

taxa and functional groups in response to climate and environmental variables. 

These can provide the baseline data to define bioregions and identify areas with an 

unusual diversity or harboring a relict microflora. Moreover, these data can be 

integrated with climate models to predict the distribution of taxa and functional 

groups under different scenarios of climate change. 

6.  To valorize and present the biodiversity data at various meeting and workshops 

attended by specialists in the field and the general public. The datasets and their 

inclusion in models will be useful as support to environmental policies in 

Antarctica. After publication in international peer-reviewed journals, all data will 

be made public in an Open Access data system (the microbial Antarctic Resource 

System at mars.biodiversity.aq and the Global Biodiversity Information Facility at 

gbif.org). 

 

C. Conclusions 

This study was the first survey of the benthic microbial mats in lakes from the whole 

Antarctic Realm. Based on HTS, the dominant eukaryotes in the benthic microbial mats 

were Metazoa, Chlorophyta and Stramenopila, followed by Fungi, Ciliophora and 

Cercozoa. Among bacteria, Proteobacteria and Cyanobacteria dominated the reads of 

16S rRNA genes. Distinct biogeographic zones could be recognized in the distribution 

patterns of both eukaryotes and bacteria based on multivariate ordination and clustering 

techniques. This bioregionalisation is in agreement with the classical subdivision of the 

Antarctic Realm into Maritime Antarctica, Continental Antarctica and the sub-Antarctic 

Islands generally observed in plants and animals. Indeed, Stramenopiles, Ciliophora, 

Cercozoa, Chlorophytes and most Metazoa showed a clear bioregionalisation, while 

Dinophyta and the Metazoan group Rotifera exhibited no clear patterns. Moreover, 

microbial communities were also highly different from similar lakes in the Arctic, 

suggesting a strong imprint of historical factors such as dispersal limitation, extinction, 
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speciation and colonization. The Antarctic food-webs appeared to be less complex and 

truncated, with particular functional groups being absent (e.g. Annelida) while others 

were relatively diverse (e.g. ciliates) and comparable between sub-Antarctic and Arctic 

lakes. Moreover, local OTU-richness of both eukaryotes and bacteria was significantly 

lower in Antarctica compared with Sub-Antarctica and the Arctic, and decreased with 

increasing latitude in the Southern Hemisphere but not in the North. Generalized linear 

models revealed that this interhemispheric diversity-asymmetry in bacteria could be 

significantly explained by environmental properties of the lakes and differences in 

energy availability, while in eukaryotes, the lack of connectivity appeared to put 

additional constraints on OTU-richness. Focusing on cyanobacteria, the conductivity 

and pH appear to contribute to the structuring of the lake communities on the Antarctic 

continent. Combined, these results show that, as with plants and animals, contemporary 

distributions of microbes and their diversity in polar and sub-polar regions are highly 

impacted by historical processes.  

The pigment study by HPLC showed that in Antarctic lakes, microbial mats were 

dominated by cyanobacteria whereas in sub-Antarctic lakes, photoautotrophs were 

dominated by mosses or higher plants. Interestingly, diatom-dominated biofilms appear 

widespread in high Arctic lakes.  

The study of the diatom biogeography in the Antarctic Realm also showed strong 

bioregionalisation patterns at multiple spatial scales and supported the delineation of the 

Continental and Maritime Antarctic lakes into existing ACBRs, while the floras in Sub-

Antarctica group into the three oceanic provinces. The diatom floras in each of the 

biogeographic entities appeared to be unique and different. In Maritime Antarctica, 

more than 120 new species were described. 

 

D. Contribution of the project in a context of scientific support to a 

sustainable development policy  

The rather high ratio of endemic and novel microbial phylotypes observed on the 

Antarctic continent shows that a significant fraction of the microbial diversity may have 

evolved in situ over larger temporal scales. Combined, the strong bioregionalization and 

macroecological patterns point to past and present dispersal limitation, evolution in 

isolation and persistence of Eukarya and Bacteria on the continent in glacial refugia 

during ice ages. This is largely in agreement with patterns for macroscopic organisms, 

and calls for stringent measures to avoid the introduction of alien microbial species into 

the Antarctic Biogeographic Realm, and to prevent the homogenisation of microbial 

communities between terrestrial ice-free regions. The loss of this Antarctic microbial 

diversity and its replacement by cosmopolitan invasive taxa would impair the scientific 

understanding of the functioning of these native communities and the study of their 

evolutionary history, specific adaptations and properties.  
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The conservation and management measures would include: 

1) Management plans for terrestrial ice-free regions and their lakes should include 

measures to prevent the introduction of non-native microbes into the AR, as exotic taxa 

might potentially affect local communities and competitively exclude endemic and 

sometimes rare species.  

2) Second, the unintentional transportation of microorganisms from one region to 

another should be avoided in order to protect regions against increased homogenization 

of their microbial floras. This evidently requires more stringent measures than those 

currently taken by national scientific program managers and tourist operators. Moreover, 

the awareness of scientists of other disciplines working in Antarctica would also need to 

be raised, as they also might disperse microorganisms to and from different local and 

regional sources during field work. This is particularly important for areas of Antarctica 

that are still pristine. Considering the steady increase in tourism and scientific activities 

in the AR as well as forecasted climate and environmental changes render this issue a 

high priority on the international conservation agenda. A special attention to this point 

could be integrated into the Environmental Impact Assessments that are mandatory to 

carry out activities in Antarctica following the Protocol on Environmental Protection of 

the Antarctic Treaty. In the sub-Antarctic Islands, the national authorities are responsible 

for the environmental management. 

3) Antarctic Specially Protected Areas (ASPA) should be designated in areas of 

unique microbial diversity, that is currently undervalued and rarely considered as being 

worth protection. Of the 72 ASPAs that existed in 2015, 19 and 7 were mentionning 

algae or cyanobacteria, respectively. These ASPA would also include―inviolate areas‖ 

that would be closed to human presence for long periods and serve as ―reference areas‖ 

for future studies with methods that will be even more sensitive and sophisticated that 

those available today.  

Though it is not possible to protect microbial habitats from the impact of climate 

change per se, and there will be climatic changes resulting in larger deglaciated areas, 

we advocate to work with the SCAR and CEP to avoid that anthropogenic dissemination 

and homogenization (including by tourism) would destroy the legacy of a unique and 

fascinating evolution. 

 

E. Keywords 

Antarctica, Arctic, lakes, microorganisms, biodiversity, biogeography, bacteria, 

cyanobacteria, green algae, diatoms, eukaryotes, climate change, metagenomics, 

cultivation, HTS, conservation, environmental protection 
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1. INTRODUCTION 

 

1.1 Context 

 

Global circulation models predict magnified climate change in the Polar Regions (e.g. 

Arctic Council, 2004; Turner et al., 2009), which will have a profound impact on 

terrestrial ecosystems if the current rates of change persist (Walther et al., 2002). In 

addition to changes in local ecosystem structure and functioning induced by climate 

change, invasions by alien species represent a potentially even greater threat to Antarctic 

and sub-Antarctic biota (Convey, 2011; Frenot et al., 2005; Lee et al., 2017) and result 

in range contraction or even extinction of local taxa. This is important because recent 

taxonomic inventories revealed clear bioregionalization patterns (Convey et al., 2014) 

and that the incidence of endemism in biota from the Antarctic Realm (AR) is high 

(Convey et al., 2007), which reflect their long history of isolation and low rates of 

migration and colonization within the region since the onset of the Mid-Miocene 

cooling of the continent (Convey et al., 2008; De Wever et al., 2009; Mortimer et al., 

2011; Stevens et al., 2006; Van der Putten et al., 2010). Hence, magnified global 

warming and range reductions/expansions have the potential to strongly affect the 

evolutionary future of regional endemics at a rate far beyond the natural variability of at 

least the past 14 Ma. This was recognized by SCAR and urged scientists to improve the 

conservation of Antarctic life and ecosystems and obtain science-based evidences for the 

delineation of Antarctic Specially Protected Areas, as defined by the Antarctic Treaty 

(https://www.ats.aq/e/ep.htm). Recently, the Antarctic Peninsula and Continental 

Antarctica have been subdivided into 16 biologically distinct smaller regions, based on 

physical parameters of ice-free areas, expert consultation, and multivariate analyses on 

occurrence patterns in macro-organisms (Terauds et al., 2012, Terauds & Lee 2016). 

Named Antarctic Conservation Biogeographic Regions (ACBRs), these zones provide an 

important tool for conservation, management and policy (Terauds et al., 2012). These 

ACBRs are thought to result from long-term isolation of biota, which may in some cases 

reflect the presence of glacial refugia, i.e. small pockets of ice-free land where life was 

able to persist through glacial maxima (Fraser et al., 2014). 

For life in Polar regions, liquid water is a severely limited resource. Hence lakes, ponds 

and seepage areas are particularly significant hot-spots of biological activity and 

biodiversity. Importantly, these lacustrine systems appear to be very responsive to 

climate changes (Quayle et al., 2002; Smol et al., 2007b; Verleyen et al., 2011) in 

different ways. Climate warming can lead to an increase in the number of ice-free days 

and to increased nutrient import as a result of the deglaciation of the catchment area, 

which, in turn, stimulate primary production (Quayle et al., 2002; Verleyen et al., 

2011). Temperature rise can also lead to changes in the moisture balance (Verleyen et 
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al., 2011). In particular, lakes with a high surface area to volume ratio were shown to 

respond quickly to changes in the precipitation-evaporation balance and are prone to 

salinization and even complete desiccation (Hodgson et al., 2006; Smol et al., 2007a). 

These lacustrine systems are dominated by microorganisms, while more complex 

organisms are generally sparse or even absent (Cavicchioli, 2015; Priscu et al., 1998). In 

Antarctic coastal ice-free regions and some inland mountains, lakes are present and 

sometimes relatively widespread, representing a range of environmental parameters that 

enable to study the biogeographic patterns in microbial communities.  Most primary 

production and nutrient cycling are generally concentrated in dense microbial mats 

thriving in the illuminated benthic zone (Quesada et al., 2009; Sabbe et al., 2004). 

Cyanobacteria are the dominant photosynthetic producers in these mats, and some taxa 

are also able to fix atmospheric nitrogen, which is a scarce resource in these (mostly) 

oligotrophic lakes (Quesada et al., 2012; Vincent, 2000). As such, benthic microbial 

mats are the first level of the foodweb in Antarctic lakes that are affected by climate 

induced environmental changes (Jungblut et al., 2010; Verleyen et al., 2010; Vincent, 

2000). The responsiveness of microorganisms and their dominating effects on ecosystem 

functioning make them suitable indicators for the early detection of climate related 

environmental changes (Vincent, 2000; Yergeau et al., 2012). However, this requires 

integration of data on their diversity, biogeographic zoning and evolutionary history 

with information on their functional attributes underlying their response and resilience 

to change. Compared to macroscopic organisms, progress in this integration has been 

lagging behind, largely because of technological difficulties associated with studying the 

vast diversity of microorganisms. Moreover, little is known about how different taxa 

contribute to the functioning of these ecosystems.  

In the last two decennia, the advent of high throughput sequencing (HTS) has marked an 

important turning point in the study of microbial biodiversity. HTS of taxonomic marker 

genes results in a high amount of sequences, including those of rare taxa, at a relative 

low effort and cost per sequence (Xu et al., 2014; Zeglin, 2015). Bioinformatic tools 

have also been developed to detect and try to correct potential artifacts that could create 

spurious taxonomic units and inflate the biodiversity (Edgar, 2013). These 

methodological break-troughs and revised species concepts based on genetic 

information revealed that many microorganisms occur in discrete ranges bordered by 

dispersal barriers (Foissner, 2008; Martiny et al., 2006), while only few are capable of 

long-distance dispersal (Cox et al., 2016). This contradicts the “ubiquity hypothesis” 

(Finlay, 2002) stating that, due to their high abundance and dispersal capabilities, 

microorganisms do not show the same degree of bioregionalisation as multicellular 

organisms do, and hence that most microbial species should be virtually cosmopolitan. 

The ubiquity hypothesis is further refuted by an increasing number of large-scale studies 

which reported that similar, yet distant, habitats contain different microbial assemblages, 
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thus indicating microbial provincialism (Nemergut et al., 2011; Vyverman et al., 2007). 

These differences can be caused by adaptations to past and present environments or 

genetic drift, but must be maintained by genetic isolation and hence dispersal limitation 

(Martiny et al., 2006; Mittelbach et al., 2015). However, the relative contributions of 

historical and environmental factors in explaining microbial biogeography seem to vary 

with the investigated spatial scale and the type of ecosystem studied (Green et al., 2006; 

Martiny et al., 2006; Verleyen et al., 2009). 

In the Antarctic Realm (AR) it is becoming evident that, similar to multicellular taxa, 

endemism among microorganisms does exist (Esposito et al., 2006; Taton et al., 2006a, 

2006b; Vyverman et al., 2010) and  the Southern Ocean thus acted as an efficient 

dispersal barrier for most microbes. Formal tests of bioregionalization patterns in 

microbial organisms in the AR are however still lacking due to the paucity of region-

wide taxonomic inventories using a standardized sampling and taxonomic approach.  

Moreover, although ACBRs serve as a tool for science, policy and conservation, 

microbes were poorly integrated in this framework due to the limited availability on 

high resolution and spatially extensive data, and it remains unclear to what degree 

microbial communities differ between ACBRs and if the latter could also be used to 

conserve the unique microbial assemblages. In addition, testing the hypothesis that 

microbes show a high level of provincialism comparable to that observed in 

multicellular biota in the AR (Chown et al., 2007; Van der Putten et al., 2010) would 

provide further significant insights into the common evolutionary origin and history of 

Antarctic biota. 

An unexpected opportunity for the CCAMBIO project was the possibility to include 

samples from 85 Arctic lakes (Greenland, Svalbard and Northern Norway). While both 

Polar Regions are characterized by similar climatic features, they have a different 

tectonic history and contrasting levels of isolation to neighboring land masses. This had 

major consequences for the potential size range contractions and expansions of biota in 

response to past glaciations and climatic changes. This particular evolutionary history 

has thus led to biological differences between habitats in Antarctica and their 

comparable counterparts in the Arctic (Fraser et al., 2012; Pointing et al., 2015). 

Therefore, it appeared interesting to test whether interhemispheric differences could be 

observed in microbial diversity and in their biogeographic patterns. 

 

1.2 Objectives and expected outcomes 

 

The overall objective of CCAMBIO was to study the diversity, biogeographic zoning, 

evolutionary history, and genomic make-up of lacustrine microbial mat communities in 

the Antarctic Realm (AR) in order to assess their resilience and local and regional 

responses to global change. The specific objectives were: 
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1.  To extend and improve existing sample collections of lacustrine microbial 

communities by conducting field campaigns in understudied regions. 

2.  To quantify the degree and nature of microbial bioregionalisation in the AR using 

in-depth inventories of microbial biodiversity (cyanobacteria, bacteria, and protists) 

based on state-of-the-art techniques, including HTS, microscopy and 

biogeochemical markers along major geographical, climatic and environmental 

gradients. Biomass partitioning among the major groups of photosynthetic 

microorganisms (green algae, cyanobacteria, diatoms/chrysophytes and 

cryptophytes, photosynthetic bacteria) was done using high performance liquid 

chromatography (HPLC) of photosynthetic pigments. The marker-pigment based 

inventory was complemented by in depth analyses of microbial community 

composition using HTS analyses of the 16S or 18S rRNA genes for cyanobacteria, 

bacteria and microeukaryotes, which were processed using custom-made 

bioinformatic pipelines that were validated using artificial communities. 

3.  To test evolutionary hypotheses on the origin, diversification rate and range 

dynamics of selected taxa. For a selection of taxa, multi-gene molecular 

phylogenies were developed to study their evolutionary history within the AR. 

Due to problems in primer design, this work was replaced by genome sequencing 

for cyanobacteria. The aim was to assess the importance of adaptive radiations and 

local population differentiation.  

4.  To study the overall genomic make-up and biochemical properties of a selected 

microbial mat community along a depth gradient to assess the contribution of the 

different taxonomic/functional groups to the functioning of the consortium in 

response to differences in lake water depth and the light climate. Functional data 

of microbial communities were obtained by a metagenomic inventory.  

5.  To explore the potential of microorganisms and functional genes/groups as early 

warning indicators for global change through modelling the distribution of focal 

taxa and functional groups in response to climate and environmental variables. 

These can provide the baseline data to define bioregions and identify areas with an 

unusual diversity or harboring a relict flora. Moreover, these data can be integrated 

with climate models to predict the distribution of taxa and functional groups under 

different scenarios of climate change. 

6.  The biodiversity data were valorized and presented at various meeting and 

workshops attended by specialists in the field and the general public. The datasets 

and and their inclusion in models will be useful as support to environmental 

policies in Antarctica. After publication of the results and findings in international 

peer-reviewed journals, all data will be made public in Open Access data systems 

(the microbial Antarctic Resource System at mars.biodiversity.aq and the Global 

Biodiversity Information Facility at gbif.org). 
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2. METHODOLOGY 

 

2.1. Sampling 

 

2.1.1. Samples 

We used a large set of 193 and 439 samples for HTS and morphological identifications 

of diatoms, respectively. The sample set consisted of samples obtained from previous 

research collaborations, exchange with international partners and during new samplings 

campaigns (Figure 1).  

The joint sample selection (by PAE, LM and CIP), ensured that the most important 

environmental gradients (lake water salinity, lake depth and pH) (Verleyen et al., 2012) 

were included in the eight different Antarctic Biogeographic Regions of Conservation 

(ACBRs) (Terauds et al., 2012) where lakes occur. The diatom dataset additionally included 

samples from the three biogeographic oceanic provinces in the Sub-Antarctic (Figure 1). 

These primary sample sets were further extended with strategically selected lake and soil 

samples from Antarctica, and (sub-) Arctic (Greenland, Svalbard and northern Norway; 

Figure 2), alpine (e.g., Chilean Patagonia, European Alps) and temperate regions for meta-

analysis, to assess the bipolar distribution of taxa, and to develop molecular phylogenies of 

focal taxa (e.g. Pinnularia borealis).  

 

2.1.2. Sampling procedures 

Benthic microbial mats were sampled using a UWITEC Glew corer in the deepest part in 

deep lakes and using a spatula in terrestrial habitats and in the littoral zone (20 cm) of 

deep lakes and shallow lakes (lake depth <2m). 

 

2.1.3. Sample preservation 

The majority of the samples consist of sediment and microbial mat samples transported 

and stored at -20°C. A few samples were preserved in ethanol. Some recent samples 

were also kept cool for the isolation of micro-algae. 
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Figure 1: Islands and ice-free regions included in the sample set of the CCAMBIO project with 

an indication of the three main biogeographic regions in the Antarctic Realm, namely 

Continental Antarctica (blue circles), Maritime Antarctica (red circles) and the sub-Antarctic 

Islands (green circles). The latter is traditionally subdivided into three biogeographic provinces, 

namely the South Pacific, the South Atlantic and the South Indian Provinces. The Antarctic 

Conservation Biogeographic Regions (ACBR) are indicated in different colors. Map modified 

from Chown & Convey (2007), Terauds et al. (2012) and Terauds & Lee (2016). For different 

studies, subsets of this sample set were selected (see description of the separate tasks below). 
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2.1.4. Supporting environmental data 

For samples taken by members of the CCAMBIO team, the instruments and protocols 

used to measure the limnological variables can be found in Verleyen et al. (2011). 

Specific conductance and pH were measured using calibrated field meters (a YSI 600 or 

YSI 33 meter and a Hanna pH meter). The concentration of the main ions was analysed 

in certified labs by using ion chromatography following ISO 10304-1(2007). For other 

samples, data were obtained from other projects or from our international partners. In 

summary, for the majority of the Antarctic, sub-Antarctic and Arctic samples, we have 

pH and measurements of specific conductance. For a subset of the Antarctic and sub-

Antarctic lake samples (n=213), additional data on the concentration of Na+, K+, Mg2+, 

Ca2+, Cl-, NO3
-, NH4

+ and PO4
3+ are available.  

 

2.2. Bioregionalisation of microbial biota and functional groups 

 

2.2.1. Structural-functional characterization of phototrophic community composition  

A total of 80 lakes from the three main biogeographic regions (i.e., Sub-Antarctica, 

Maritime Antarctica and Continental Antarctica) as well as North and South Greenland 

(Figure 2) were selected for a high performance liquid chromatography analysis of their 

photosynthetic pigments. The samples were freeze-dried, followed by immediate 

pigment extraction by sonication in 2 to 5 mL HPLC-grade acetone (90%), and filtration 

of the extracts through a nylon 0.20 µm filter. Pigments were separated and quantified 

using an Agilent technologies 1100 series HPLC system, calibrated using authentic 

pigment standards and compounds isolated from reference cultures (Jeffrey et al., 1997). 

A detailed description of the methods used is given in Tavernier et al. (2014). 

 

2.2.2. Distribution patterns of diatoms based on the morphology 

Diatom samples (n=439) were collected from the uppermost 5 mm of sediment cores in 

deep lakes (depth >0.5 m). In shallow lakes, which have little or no ice cover around 

the edges during summer, sediment samples were collected at a depth of 0.2 m in the 

littoral zone. Subsamples for diatom analysis were subsequently digested with H2O2 (30 

%). For light microscopy, a subsample was dried onto a glass coverslip, mounted in 

Naphrax® and studied using an Olympus BX53 microscope equipped with differential 

interference contrast optics and a Zeiss Axiophot microscope equipped with differential 

interference contrast. For scanning electron microscopy, oxidized sample material was 

directly air-dried onto specimen stubs and sputter-coated, and examined with a Jeol JSM-

840 operated at 15 kV and a Zeiss Ultra field emission SEM operated at 5 kV. For 

transmission electron microscopy, 10 µl aliquots of oxidized material were placed on 

formvar-coated copper slot grids. Grids were examined with a Jeol JEM 1010 operating 

at 60 kV.  
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The diatom floras of the Maritime Antarctic locations, James Ross Island and the South 

Shetland Islands, were revised. Our existing datasets were also extended with additional 

samples from Marion Island (Sub-Antarctica) and Schirmacher Oasis (Dronning Maud 

Land) and analysed using multivariate statistics to reveal biogeographic patterns.  

 

2.2.3. High-Throughput Sequencing targeting Bacteria 

 

2.2.3.1. Amplicon sequencing of environmental 16S rRNA genes for the Bacteria 

Per microbial mat sample, 1 g sediment was used for DNA extraction. After extracellular 

DNA was removed following Corinaldesi et al. (2005), DNA extraction was performed 

according to (Zwart et al., 1998). Extracted DNA was subsequently stored in TE-buffer at 

-80°C until further processing. 

Technical specifications and protocols described by Tytgat et al (2016) were followed. 

Briefly, duplicate PCRs were performed, targeting the V1–V3 hypervariable regions of 

the 16S rRNA genes. Modified primers were used to allow tagging of each sample using 

the Nextera XT index kit (Illumina, USA). Products were purified, quantified and pooled 

for sequencing by using Illumina MiSeq technology yielding 2x 300bp paired end reads. 

To check the overall run quality and benchmark processing variables, a blank sample 

and two artificial communities (composed of a set of known organisms) as well as 

several replicate samples were included (Tytgat et al., 2016).  

In total 193 aquatic samples, originating from 8 Antarctic and 2 sub-Antarctic regions as 

well as 39 Arctic samples (Figure 2), were analysed and compared using a range of 

analysis tools (see 2.2.5 below). For all samples pH and specific conductance were 

available. Monthly averaged (1990-2013) air temperature measurement were obtained 

from the CRUTEM4 database version 4-2015-06 (Jones et al., 2012; Osborn et al., 

2014), using records for the nearest station within a 500 km radius. When no 

temperature data were available (Transantarctic mountains), an approximation was made 

based on monthly averaged satellite data (1985-2005) from the NASA Earth 

Observations database (NEO, NEO-team), which used data provided by the MODIS 

Land Science Team (MODIS Land Science Team, 2017). Monthly averaged (1983-2005) 

insolation incident on a horizontal surface data (solar irradiance, kWh m-2day-1) were 

obtained from NASA Surface meteorology and Solar Energy (SSE, release 6.0) 

(Stackhouse et al., 2008) at a one by one degree resolution. The percentage of surface 

area covered by sea/ocean and ice sheets in a 200 km radius circle was used as a proxy 

measure for lake isolation, and was calculated following Vyverman et al. (2007). 

Altitude and approximate shortest distance to the sea measurements were taken using 

the Google Earth measuring tool and satellite image maps (15 February 2015; Google 

Inc.). 
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Figure 2: Sample locations (depicted by triangles) displayed on a map of the Northern (left) and 

Southern (right) hemispheres. Dashed line: Arctic/Antarctic circle (defined as the latitude where 

the sun is above the horizon for 24h/day at least once a year); purple line: 10°C summer 

isotherm. 

 

Results were compared with the 18S eukaryote sequencing data from the same samples 

(2.2.4 below) and are grouped in several manuscripts that are in preparation. 

 

2.2.3.2. Amplicon sequencing of environmental 16S rRNA genes for the order 

Deinococcales 

For amplicon sequencing of 16S rRNA genes of the focal group Deinococcales, DNA 

were extracted as described above and a specific amplicon sequencing was attempted as 

this group was previously found to comprise mostly isolates that are potentially 

restricted to Antarctica. We hypothesized that some of these could represent endemic 

species adapted to harsh environmental conditions and therefore particularly sensitive to 

climate change. However, as it proved not possible to design primers of sufficient 

specificity, we tested a published primer set (Theodorakopoulos et al., 2013) for 

Illumina sequencing. We used DNA from 5 environmental samples (3 from the site of 

the Princess Elisabeth Station, 1 from Schirmacher Oasis and 1 from Pourquoi-Pas 

Island) and DNA extraction, PCR and quality controls were done as before. Also here, a 

modified artificial community was included to optimize subsequent data analysis. Our 

results indicate that also the Theodorakopoulos-primers lack specificity and pick up 

other taxa (i.a. Phylum Firmicutes) besides Deinococcus. We therefore abandoned our 

attempts to target Deinococcus in the Illumina sequencing. 
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2.2.3.3. Amplicon sequencing of environmental 16S rRNA genes for the Cyanobacteria 

As very little work had been published for cyanobacteria when the CCAMBIO project 

started, a pilot study was carried out to optimize the use of HTS for the study of 

Antarctic cyanobacterial diversity (Pessi et al., 2016). Artificial communities were used 

to evaluate the performance of different bioinformatics pipelines. These were assembled 

using twenty-two cyanobacterial strains from the BCCM/ULC Cyanobacteria Collection 

(http://bccm.belspo.be/about-us/bccm-ulc) (TABLE I). Furthermore, the effect of different 

DNA extraction methods, the use of longer barcoded primers and the reproducibility of 

the results were determined using environmental samples.  

TABLE I. List of reference strains used in the artificial communities Art1 and Art2. 

IDa Strain name 
Accession 

number 

Relative abundance (%) 

Art1 Art2 

ULC022 Phormidesmis priestleyi ANT.L61.2  AY493582 4.5 8.9 

ULC026 Phormidesmis priestleyi ANT.L52.6 AY493579 4.5 8.9 

ULC049 Phormidesmis priestleyi ANT.L66.1  AY493581 4.5 8.9 

ULC009 Plectolyngbya hodgsonii ANT.LPR2.2  AY493583 4.5 8.9 

ULC001 Leptolyngbya frigida ANT.L53B.1  AY493608 4.5 8.9 

ULC029 Leptolyngbya frigida ANT.L52B.3  AY493612 4.5 8.9 

ULC043 Leptolyngbya antarctica ANT.LWAV6.1  AY493602 4.5 8.9 

S141 Leptolyngbya sp. ―Doroninskoye‖  KT753316 4.5 8.9 

ULC041 Leptolyngbya antarctica ANT.LAC.1   AY493588 4.5 8.9 

ULC065 Cyanobium sp. ―Bylot Island‖  KT753317 4.5 1.5 

S082 Cyanobium sp. ―Chester Cone‖  KT753318 4.5 1.5 

ULC084 Cyanobium sp. ―Laguna Chica‖  KT753319 4.5 1.5 

ULC004 Leptolyngbya cf. fragilis ANT.L52.1  AY493584 4.5 1.5 

S111 Microcoleus vaginatus JR6  KT753320 4.5 1.5 

S120 Microcoleus favosus JR20  KT753321 4.5 1.5 

ULC117 Leptolyngbya sp. ANT07.JR16  KT753322 4.5 1.5 

ULC123 Leptolyngbya sp. ANT07.JR23  KT753323 4.5 1.5 

ULC080 Anabaena sp. CY-036  KT753324 4.5 1.5 

S133 Nodularia sp. ―khil 06-sten‖  KT753325 4.5 1.5 

ULC050 Nostoc sp. ANT.L34.1  AY493591 4.5 1.5 

ULC069 Pseudanabaena frigida O-302  KT753326 4.5 1.5 

S075 Oscillatoriaceae Toolik Lake O-103  KT753327 4.5 1.5 

aA ULCXXX number indicates that the strain is available at the BCCM/ULC Cyanobacteria 

Collection (http://bccm.belspo.be/about-us/bccm-ulc) 

http://bccm.belspo.be/about-us/bccm-ulc
http://bccm.belspo.be/about-us/bccm-ulc
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Sequences of the 22 reference strains were aligned using MUSCLE (Edgar, 2004) and 

trimmed to the expected amplicon product of the V3-V4 variable region – hereafter 

referred to as “reference sequences”. For the artificial community, genomic DNA was 

extracted from the reference strains using the DNeasy Plant Mini Kit (Qiagen, Venlo, the 

Netherlands). DNA extracts were quantified using the Quant-iT PicoGreen dsDNA 

Assay Kit (Life Technologies, Carlsbad, CA, USA) and pooled at known abundances: 

equal amounts for library Art1 (“even”) and different ones for library Art2 

(“staggered”)(TABLE I). The latter was assembled to represent a more realistic scenario of 

taxa distribution in Antarctic environments, where some species are more abundant than 

others. 

The PCR reactions were carried out with the cyanobacteria-specific primer set CYA359F 

and CYA781R(a)/CYA781R(b)as described by Pessi et al. (2016). Negative controls (PCR 

mixes with either no DNA or the blank DNA extracts) were always included during PCR 

amplifications. To minimize stochastic PCR bias, amplification was carried out as six 

independent PCR reactions (three for each reverse primer) that were pooled before 

purification. Pooled PCR reactions were purified using the GeneJet PCR Purification Kit 

(Thermo Scientific, Waltham, MA, USA). Purified amplicons were quantified as 

described above, pooled in equimolar concentrations and sent to Beckman Coulter 

Genomics (Danvers, MA, USA), where smaller amplicons were removed using the 

Agencourt AMPure XP Kit (Beckman Coulter, Brea, CA, USA) and sequencing adapters 

were ligated to the amplicons. Sequences were obtained using the 454 GS FLX+ 

Titanium platform (454 Life Sciences, Branford, CT, USA) or the Illumina Hiseq2500 

platform (Illumina, San Diego, CA, USA) because the first technology was discontinued 

by Roche during the course of the project. The Figure 3 shows the location of samples 

studied by one or the other technology. 

A first 454 pyrosequencing study was carried out on microbial mats from 13 Antarctic 

lakes (Figure 3). The studied lakes are distributed across eight Antarctic regions 

encompassing four distinct Antarctic Conservation Biogeographic Regions (ACBRs): 

ACBR1 “NW Antarctic Peninsula” (AP), ACBR5 “Enderby Land” (EL), ACBR7 “East 

Antarctica” (EA) and ACBR10 “Transantarctic Mountains” (TM). DNA was extracted from 

the mats using the PowerSoil DNA Isolation Kit (MOBIO Laboratories, Carlsbad, CA, 

USA) according to the manufacturer‖s instructions with some modifications. Tubes were 

agitated on a vortex for 20 extra min to ensure a good disintegration of the mats and, if 

not completely disintegrated, a sterile pestle was used to crush the remaining pieces. 

DNA concentration and quality were determined using a NanoVue spectrophotometer 

(GE Healthcare Life Sciences, Little Chalfont, UK), and double stranded DNA was 

quantified as described above. A blank DNA extraction consisting of sterile Milli-Q 
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water was carried out in parallel. PCR and sequencing were performed as described for 

the pilot study above. 

Finally, using Illumina Sequencing, additional analyses were performed for 89 microbial 

mat samples from 84 lakes or ponds, distributed in 8 ACBRs (ACBR 1 NE Antarctic 

Peninsula, ACBR 3 NW Antarctic Peninsula, ACBR 5 Enderby Land, ACBR6 Dronning 

Maud Land, ACBR 7 East Antarctica, ACBR8 North Victoria Land, ACBR 9 South 

Victoria Land, ACBR10 Transantarctic Mountains) and the sub-Antarctic Marion and 

Macquarie Islands (Figure 3). Five samples were run in duplicate, leading to a total of 94 

samples. DNA extractions and PCR were carried out as described above for the 454 

pyrosequencing study. Sequencing was performed on the Illumina Hiseq2500 platform 

(Illumina, San Diego, CA, USA) using 2x100 bp paired end libraries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Map of Antarctica showing the lakes investigated in the Amplicon sequencing of 

environmental 16S rRNA genes studies using R package “ggplot2” and “mapproj”. Blue: unique 

to the 454 pyrosequencing study, Green: common to the two studies, Red: unique to the 

Illumina sequencing study. 

 

2.2.4. Amplicon sequencing of environmental 18S rRNA genes for Eukarya 

In parallel with the library preparation of the bacterial 16S rRNA (2.2.3.1), the V4 region 

of the eukaryotic 18S rRNA gene was targeted with the universal primers 

TAReuk454FWD1 (5‖-CCAGCASCYGCGGTAATTCC-3‖) and TAReukREV3 (5‖-

ACTTTCGTTCTTGATYRA-3‖) (Stoeck et al., 2010). Amplicon libraries were also 

prepared as described in Tytgat et al. (2016). In short, PCRs were performed in 

duplicate, after which, products were purified with Agencourt AMPure XP beads 

(Beckman Coulter Inc.). The amplicon libraries were barcoded using the NEXTERA DNA 
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kit (Illumina Inc.) according to manufacturer's instructions, and were pooled in 

equimolar concentrations. Sequencing was done on a 300bp paired-end Illumina MiSeq 

machine, where cluster density was reduced by spiking with 20% PhiX DNA (Illumina 

Inc.), which has been shown to increase to overall quality of the sequencing run (Kozich 

et al., 2013). Two artificial communities (composed of pooled cultures) as well as 

several replicate samples were also included in each run.  

For the 18S rRNA amplicon sequencing, similar as for the 16S rRNA gene (2.2.3.1), 193 

samples from benthic microbial mats were sequenced, as well as well as 39 samples 

from four Arctic regions to allow a broader comparison of polar microbial diversity 

(Figure 2). The results of the 16S and 18S rRNA sequencing were combined, and will be 

discussed in two manuscripts that are currently at the final stages of preparation. 

 

2.2.5. Data processing and analysis of amplicon sequences 

For Eukaryotes and Bacteria, paired end reads were assembled using PEAR (version 

0.9.1; Zhang et al., 2014) and were further processed and quality filtered using 

USEARCH (Edgar, 2013). The processing parameters were optimized using the artificial 

community data as described by Tytgat et al. (2016). OTU clustering was done with 

UPARSE (Edgar, 2013) and de novo chimera filtering with UCHIME (Edgar et al., 2011) 

with a cut-off of 97% used as threshold to cluster sequences.  The sequence with the 

most identical reads in each OTU was chosen as representative, to which a taxonomy 

was annotated with Mothur‖s (Schloss et al., 2009) implementation the Wang naive 

Bayesian classifier algorithm (Wang et al., 2007), using the PR2 database (version 

gb_203) as template for eukaryotes (Guillou et al., 2013) and the Greengenes database 

version 13_5 (DeSantis et al., 2006) for bacteria. 

For Cyanobacteria, the pilot study on artificial communities was first realized to select 

the most correct settings for the bioinformatic pipeline. Quality control of reads, removal 

of chimeric sequences and Operational Taxonomic Unit (OTU) clustering were first 

performed on the data obtained for the artificial communities, with five independent 

bioinformatics pipelines using MOTHUR and UPARSE as described in Pessi et al. 

(2016). For each pipeline, sequences were clustered into OTUs using a cut-off similarity 

value of 97.5% according to Taton et al. (2003). 

The correspondence between the OTUs retrieved at the end of each pipeline and the 

reference strains used to assemble the artificial communities was determined by 

mapping the OTU representative sequences to the 22 reference sequences using the 

“uparse_ref” command in USEARCH with default parameters (Edgar, 2013). OTUs were 

classified as “Perfect” (identical to a reference sequence), “Good” (≥99% similarity), 

“Noisy” (≥97.5% to <99% similarity), “Other” (<97.5% similarity), and “Chimeric” 

(composed of two or more parent reference sequences). The relative abundance of each 

reference strain was inferred considering only “Perfect” and “Good” OTUs, i.e., OTUs 
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with ≥99% similarity to a reference sequence. To avoid biases due to uneven 

sequencing depths, data sets were subsampled without replacement to 15,820 

sequences per sample. 

For the environmental samples studies of Cyanobacteria (454 pyrosequencing and 

Illumina sequencing runs), based on the results obtained for the artificial communities, 

pipeline (IV) “fastq_maxee” was selected for the analysis. OTUs were classified using the 

lowest common ancestor (LCA) algorithm implemented in CREST (Lanzén et al., 2012) 

based on two databases: Greengenes (McDonald et al., 2012) for the 454 

pyrosequencing run and RDP (Wang et al., 2007) for the Illumina sequencing run, and 

non-cyanobacterial OTUs were removed from downstream analyses. For each OTU, all 

closely related (≥99% similarity) cultured and uncultured sequences were retrieved 

from GenBank using BLAST, and information regarding the geographic origin of each hit 

was obtained using in-house UNIX scripts. OTUs were then classified as “Novel” (if no 

related sequences were found in GenBank at the 99% similarity threshold), “Endemic” 

(when only hits from Antarctica were retrieved), “Polar” (when hits were limited to 

Arctic and Antarctic biotopes), “Polar/Alpine” (when hits from high altitude biotopes 

were also included) and “Cosmopolitan” (when hits located outside Polar and alpine 

biotopes were found). For the phylogenetic analysis, a ―backbone‖ tree was first built 

using full 16S rRNA gene sequences from 141 cyanobacterial genomes, as well as 

sequences from 125 cyanobacterial strains from the BCCM/ULC Cyanobacteria 

Collection and their closest relatives in GenBank. Sequences were aligned using 

MUSCLE and a maximum likelihood tree was built using the RAxML algorithm based on 

the GTRGAMMA model and 1,000 bootstrap replicates (Stamatakis, 2006). OTU 

representative sequences were then added to the alignment and another RAxML tree 

was computed as above but using the previous tree as a stable backbone. In addition, 

for the Illumina sequencing study, closely related sequences (>= 94.0% similarity) of 

the representative sequence of each OTU were retrieved from GenBank using BLAST in 

order to improve the taxonomic identification. Home made bash/perl scripts were used 

for the final identification. OTUs matching with sequences named “uncultured 

bacterium” or “uncultured cyanobacterium” were checked manually in order to remove 

non cyanobacterial ones. 

Several multivariate statistical techniques were applied on the different datasets. These 

included the calculation of pairwise distance measures, clustering techniques and direct 

and indirect ordinations. The specific methods used for each dataset are given in the 

results section. 
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2.3. Phylogeographic studies of focal taxa 

 

2.3.1. Isolation and characterization of bacterial strains 

Isolations have been performed, with a focus on the presence of colored pigments in the 

bacterial colonies. Red to yellow pigments may reflect adaptation to UV-radiation and 

light stress and more generally, exposure to stress. Such stress tolerant organisms might 

be more tolerant to impacts of climate change. Isolates were grouped by MALDI-TOF 

MS and representatives were identified by partial 16S rRNA gene sequence analysis. 

In view of the particular resistance of Deinococci to exposure to desiccation and 

radiation stress, and because we have previously obtained numerous novel isolates of 

this group from Antarctic samples, we have focused on this group to develop a multi-

locus sequence scheme for phylogenetic analysis. Therefore, the available annotated 

genomes of Deinococcus type strains and relatives were compared to select 6 

housekeeping genes and to design specific primers for their amplification. PCR protocols 

were optimized and six genes were sequenced. Our goal was to end up with 2 or 3 

genes with robust PCRs that can be used to assess the Deinococcus diversity and its 

biogeographic distribution. 

 

2.3.2. Isolation and characterization of cyanobacterial strains 

a) In order to isolate new strains from regions from which we do not have yet isolates, 

three samples from North Victoria Land and three samples from South Victoria Land 

were inoculated on BG11 1/3 diluted medium with 500 μg/mL-1 cycloheximide to inhibit 

the growth of eukaryotic organisms. 

b) Molecular phylogenies based on rpoC1 gene and ITS sequences from 43 thin 

filamentous cyanobacterial strains difficult to identify and one Nostocales were 

constructed with RAXML and the MEGA 5 software. Seventy rpoC1 sequences from 

published genomes were aligned with our sequences to perform a maximum likelihood 

phylogeny. Among the selected strains, our dataset contained 13 strains of the 

cosmopolitan genus Nodosilinea (Perkerson et al., 2011), 13 Antarctic strains from the 

lineage of Phormidesmis priestleyi (Taton et al., 2006a) and six Leptolyngbya antarctica. 

c) Detection of nifH/D genes was carried by PCR with the nifH primers of Olson et al. ( 

1998) and Roeselers et al. (2007) on the above mentioned strains. 

d) As preliminary experiments with Multiple Locus Sequence Analysis have shown that 

the primers designed on certain taxa did not work well for the whole cyanobacterial 

phylum and that this resulted in many missing data and impaired analyses, the whole 

genome sequencing of several Antarctic strains was started. Ten unicyanobacterial 

strains from six different lineages and four regions (West Peninsula, Transantarctic 

Mountains, East Antarctica, Dronning Maud Land) were selected for genome 

sequencing. They represent genotypes that are very frequently observed in our diversity 
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studies. The strain Phormidesmis priestleyi ULC007 was purified to axenic status 

through multiple liquid/solid media transfers as described by Rippka et al. (1979). The 

genomic DNAs were extracted using the GenElute Bacterial genomic DNA kit (Sigma-

Aldrich, St Louis, Missouri, USA).  

For ULC007, two Illumina runs generating 100-paired and 250-paired end reads were 

performed. Sequences from both Illumina runs were assembled using the SPAdes and 

Velvet software packages. Resulting contigs were assembled using the CISA3 software. 

The genome sequences were annotated using glimmer3, GeneMark, Prodigal by RAST 

taking the SEED approach with the Figfams technology. The genome comparative 

analysis was performed on a database of 72 curated cyanobacterial genomes. The 16S 

rRNA sequences were extracted using RNAmmer with same genomes‖ dataset. After 

aligning the sequences, the BEAST software was used to construct a calibrated relaxed 

molecular clock. Root prior was set at 3.8 Ga and akinete fossils were used as a 

calibration prior to support the Nostocales clades at 2.1 Ga. In order to screen for 

sequences encoding secondary metabolites biosynthesis enzymes, assembled contigs 

were analyzed by the online version of antiSMASH software.  

The other nine genomes were in fact kinds of metagenomes because they still included 

the sequences of accompanying bacteria and were also analyzed during a  collaboration 

with Luc Cornet, Prof. Denis Baurain (Phylogenomics, ULiege) and Prof. Emmanuelle J. 

Javaux (Evolution and Astrobiology Lab, ULiege) . After observing that a number of the 

publically available cyanobacterial genomes were contaminated by bacterial sequences, 

these public genomes were cleaned and made available (more details in Cornet et al., 

2018b). Dedicated bioinformatic pipelines were designed to treat the metagenomes of 7 

Antarctic strains: ULC027 Phormidium priestleyi ANT.PROGRESS2.5, ULC041 

Leptolyngbya antarctica ANT.ACE.1, ULC073 L. glacialis TM1FOS73, ULC082 

Cyanobium sp. Chester Cone, ULC084 Cyanobium sp. Laguna Chica,  ULC129 L. 

foveolarum TM2FOS129, ULC165 Leptolyngbya sp. OTC1/1 (more details in Cornet et 

al., 2018a) 

 

2.3.3. Isolation and characterization of diatom strains 

About 300 monoclonal diatom cultures of Pinnularia borealis, a cosmopolitan species 

complex, were established from various Maritime Antarctic, Arctic and Alpine regions, 

including Spitsbergen, James Ross Island and the South Shetland Islands, and added to 

the existing dataset (Souffreau et al., 2013). 

A maximum parsimony phylogeny of the D1-D3 LSU rDNA gene has been developed 

for all newly obtained strains.  
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2.3.4. Isolation and characterization of green algal strains 

Strains from the 18S type EO2-14, II-11, VPL6-4, B6-6, WO1L-3 were isolated from lakes 

in Maritime and Continental Antarctica (De Wever et al., 2009) and coupled to the 

dataset of Dr. K. Sciuto, Dr. I Moro, and Dr. N. La Rocca (University of Padova, Italy) 

which contained the 18S rRNA sequences of the Gondwana strain stored in the 

International Nucleotide Sequence Database (INSD) with the accession number 

AM419228. 

Molecular phylogenies were developed based on the ITS2 spacer, rbcL and tufA gene in 

collaboration with the team from the University of Padova and combined with 

morphological (light microscopy and scanning electron microscopy) and ultrastructural 

observations. 

 

2.4. Metagenomics and metatranscriptomics of Antarctic lake samples 

This work package was aimed to study the genetic make-up of lacustrine microbial 

communities and their adaptations to the extreme Antarctic environment in East 

Antarctica. Six samples were taken in February 2015 at 0.1 m, 1 m, 2 m, 4 m, 5 m and 

10 m depth in Lake Naga (Naga Ike, SK5, Syowa Oasis, 69°S, 39°E; maximum depth 

10.8 m), in Skarvsnes, an ice-free peninsula in Lützow Holm Bay. The samples for 

metatranscriptomics were immediately preserved with LifeGuard® solution (MoBio) to 

deactivate RNAse proteins and frozen to further prevent the breakdown of RNA.  

DNA and RNA were co-extracted using the MoBio RNA PowerSoil® Total RNA Isolation 

Kit and MoBio DNA Elution Accessory Kit. Care was taken to avoid moss material, to 

focus only on the microbial and viroid communities.  

The RNA processing involved ribosomal RNA depletion in all but one replicate of each 

transcriptomics sample using the Ribo-Zero Magnetic Gold (Epidemiology) kit 

(Epicentre) to increase the mRNA recovery. The non-rRNA depleted replicates were 

used to identify the active members of the community. cDNA synthesis was finally 

performed using the Bio Scientific NEXTflex Directional RNA-Seq Kit V2, which enabled 

us to track strand-specific transcription. However, the extracted RNA proved not to be of 

sufficient quality to continue the processing pipeline up to sequencing. This degraded 

RNA was likely due to fluctuations in temperature during different transportation stages. 

Hence, we only applied metagenomics sequencing. For this, extracted DNA of three 

samples (naga1 (0.1 m depth), naga5 (5 m depth) and naga6 (10 m depth)) was sent to 

Baseclear B.V. (Leiden, Netherlands), where metagenome shotgun libraries were 

prepared following the standard protocol of the Nextera XT library preparation kit 

(Illumina), and 125bp paired-end sequenced on an Illumina HiSeq 2500 machine. 

Reads were processed using an in-house developed pipeline. Quality trimming was 

done using Trimmomatic, first removing any remaining Illumina adapter sequences, 

followed by a 4 bp sliding window set to an average Q score of 20, and finally 

http://www.ddbj.nig.ac.jp/intro-e.html#insd
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removing trimmed reads shorter than 60 bp. Next, 2 pipelines were run in parallel. The 

first one applied a direct annotation approach, while the second one involved an 

assembly using both Megahit (Li et al., 2015) and (Nurk et al., 2017) for comparison. For 

both pipelines, ribosomal reads were extracted using SortMeRNA (Kopylova et al., 

2012) and Kraken2 (Wood et al., 2014) was subsequently used to assign a taxonomy to 

these reads. The non-ribosomal reads were subjected to Diamond BLAST (Buchfink et 

al., 2014) and the output was consequently imported in MEGAN (Huson et al., 2007) to 

deduce taxonomical associations and gene annotations using several databases 

(EggNOG, SEED, InterPro2GO). An independent functional annotation was done using 

InterProScan (Jones et al., 2014). Contigs were binned using CONCOCT (Alneberg et 

al., 2014) to try and reconstruct genomes. 
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3. RESULTS 

 

3.1. Phototrophic communities studied using marker pigments 

 

The following chlorophyll and carotenoid pigments could be identified in the 80 Arctic, 

Antarctic and sub-Antarctic lakes: chlorophyll a, chlorophyll b, chlorophyll C2, 

phaeophytin a, fucoxanthin, neoxanthin, hexa-fucoxanthin, violaxanthin, 

diadinoxanthin, diatoxanthin, zeaxanthin, lutein, canthaxanthin, ß-cryptoxanthin, 

echinenone, α-carotene, ß-carotene, Chlorophillide a. Among these, a number of major 

phototrophic groups (specific marker pigments in brackets) (Hodgson et al., 2004a) 

could be distinguished, including, Bacillariophyta (chlorophyll c2), Ochrophyta 

(fucoxanthine, diadinoxanthine), Cyanobacteria (canthaxanthin, echinenone), 

Chlorophyta (chlorophyll b, lutein, α-carotene).  

 

Figure 4. PCA of the group-specific HPLC marker pigments. Chlorophyll and carotenoid pigment 

concentrations (µg/g dry-weight sediment) were normalized to their respective totals 
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PCA revealed a separation along the first axis between samples dominated by 

cyanobacteria (echinenone, canthaxanthin), most of which were situated in Antarctica, 

from those in which the most abundant pigments were predominately affiliated with 

chlorophytes (including higher plants) (mostly sub-Antarctic lakes) (Figure 4). The 

second PC axis, allowed to discriminate a third group that included mainly Arctic lakes, 

which were dominated by ochrophyte or diatom specific pigments (chlorophyll c2, 

fucoxanthine). This separation is in agreement with previous studies which showed that 

in Antarctic lakes microbial mats dominated by Cyanobacteria are widespread as a result 

of the lack of large grazers and hence bioturbation as well as the lack of competitors 

(macrophytes….) (Vincent, 2000). By contrast, in sub-Antarctic lakes, photoautotrophic 

benthic communities are dominated by mosses or higher plants, while diatom-

dominated biofilms are widespread in high Arctic lakes. 

 

3.2. Bioregionalisation patterns in diatoms 

The integration of newly developed and taxonomically harmonized existing diatom 

datasets resulted in a circum-Antarctic wide diatom database containing 439 lakes. For 

this, the freshwater and terrestrial diatom flora of the Maritime Antarctic Region (James 

Ross Island and the South Shetland Island) needed to be entirely revised, based on the 

currently accepted species concepts. The analysed sampling set contained, besides lake 

samples, also samples collected from streams, moss vegetations and soils. Every diatom 

genus present in these samples was analysed, resulting in the description of more than 

120 new species, mainly in the genera Muelleria, Hantzschia, Nitzschia, Pinnularia, 

Luticola and Humidophila. A new iconographic guide for the Maritime Antarctic Region 

presenting all these new species was published recently (Zidarova et al, 2016). 

Additionally, in the sub-Antarctic Region, samples from Macquarie Island were analysed 

in order to obtain composition data from the Pacific Province of this region. 

Strong bioregionalisation patterns emerged at multiple spatial scales. Distinct and 

differently sized diatom floras characterized each of the three main biogeographic 

regions, with only 4% of the species being shared between Maritime Antarctica, 

Continental Antarctica and the sub-Antarctic islands. Biogeographical provincialism 

within the different ice-free regions largely followed previous delineations based on 

macroscopic organisms. More in particular, there is a general support for the delineation 

of the Continental and Maritime Antarctic lakes into ACBRs (Terauds et al., 2012), while 

the floras in Sub-Antarctica group into the three oceanic provinces (Figures 1, 5). These 

beta diversity patterns were underlain by species turnover rather than nestedness 

(calculated following Basegla (2010)), which underscores the uniqueness of the diatom 

floras in each of these biogeographic entities.  
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Figure 5: Biplots of canonical analyses of principal coordinates showing the site scores of the 

457 samples from (A) the entire dataset and (B-D) the three regions analysed separately, namely 

Maritime Antarctica (in red, B), Continental Antarctica (in blue, C), and Sub-Antarctica (in green, 

D). CCR is the correct classification rate, or classification success, and denotes the percentage of 

lakes that are grouped in their respective a priori defined biogeographic entities. 

 

Redundancy analysis and variation partitioning of a subset of lakes (n=213) for which a 

common set of environmental data was available, revealed that variation in local diatom 

community structure is significantly (P<0.05) explained by both (i) environmental, as 

well as (ii) historical and geographic factors. Combined, geographic and historical 

factors explain 44.4% of the total variation in local diatom community structure. The 

significant local and climatic variables are the difference between mean summer and 

winter temperature, pH, specific conductance, and the concentrations of Cl-, Na+, Ca2+, 

PO4
2+

, K+, NO3
-, Mg2+ and NH4

+. These factors jointly explain 33.6% of the variation in 

diatom turnover between the lakes. As expected, the overlap between both sets of 

predictors is relatively large (24.8%), given that much of the variation in environmental 

conditions is spatially structured at such a large scale. Additionally, however, 

geographic and historical variables uniquely explain 10.8% of the total variation in 

diatom data, while the unique contribution of local environmental and climatic 

variables amounts to only 8.8%. 
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Standardized estimates of regional richness to an equal number of samples (n=105) 

increased from 58 diatom species, to 120, and 232 in Continental Antarctica, Maritime 

Antarctica and the sub-Antarctic islands, respectively. Local species richness increased 

linearly with decreasing latitude. A total of 221 out of the 470 species is only known 

from the Antarctic Realm, with the proportion of regionally restricted species decreasing 

with latitude (74 ± 16% in Continental Antarctica, 61 ± 9% in Maritime Antarctica, 

and 46 ± 13% in the sub-Antarctic Islands). The endemism appeared particularly high 

in terrestrial genera such as Luticola, Muelleria, Humidophila and Hantzschia. These 

latitudinal gradients in species richness and the level of endemism could be significantly 

explained by geographical isolation, regional differences in the deglaciation history, as 

well as by geographic variation in environmental and climatic conditions.  

Combined, the strong bioregionalization and macroecological patterns point to past and 

present dispersal limitation, evolution in isolation and persistence of diatoms on the 

continent in glacial refugia during ice ages. This is largely in agreement with 

macroscopic organisms, and calls for stringent measure to avoid the introduction of 

alien microbial species into the Antarctic Biogeographic Realm, and to prevent the 

homogenisation of microbial communities between terrestrial ice-free regions 

 

3.3. Amplicon sequencing of environmental 16S rRNA genes for Bacteria and 

18S rRNA genes for Eukarya 

On average, 94.824 ± 64.888 and 22.033 ± 27.776 quality controled sequences per 

sample for Eukaryotes and Bacteria, respectively, were obtained. This resulted in 9,403 

and 8,871 OTUs for Eukarya and Bacteria, respectively in the Antarctic, sub-Antarctic 

and Arctic samples (Figures 1,2), after removal of singleton and doubleton OTUs. 

Among eukaryotes, Metazoa, Chlorophyta, Stramenopila, Fungi, Ciliophora and 

Cercozoa dominated the assemblages, while among Bacteria, Proteobacteria and 

Cyanobacteria were most abundant (Figure 6). Interestingly, sub-Antarctic assemblages 

harbored more complex food webs, with arthropods, nematodes, rotifers, flatworms and 

annelids as main metazoan groups. Lakes on the continent, however, were characterized 

by fewer metazoan groups, the almost complete absence of Platyhelminthes, Annelida 

and Gastrotricha, and a dominance of microbial herbivores and secondary consumers, 

including a relative high diversity of ciliates and tardigrades. This is in agreement with the 

depauperate pelagic food webs reported in the small number of Antarctic lakes studied so 

far (Laybourn-Parry et al., 2007). In addition to the lack of competition by higher plants, 

the absence of large metazoan grazers in the Antarctic lakes, might favor the dominance 

of Cyanobacteria, because the lack of bioturbation is one of the factors resulting in the 

presence of perennial microbial mats in these systems (Vincent, 2000). 
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Figure 6. Regional community composition, based on the summed relative abundances per 

sample. The averaged composition of the Antarctic, Sub-Antarctic and Arctic regions for 

eukaryotes (A) and bacteria (B) are shown at the class level (bars), and are alphabetically 

grouped and colour coded per phylum. Only classes that represent at least 0.1% of the 

sequences in at least one region are shown. Classes representing over 1% of the sequences in 

one region are indicated with (*).  

 

Moreover, in both eukaryotes and bacteria, local OTU-richness was significantly lower 

in Antarctica compared to the Sub-Antarctic and the Arctic, and decreased with 

increasing latitude in the Southern Hemisphere but not in the North (Figure 7). We used 
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generalized linear models (assuming Poisson-distributed count data) to examine possible 

drivers of this interhemispheric diversity-asymmetry. This analysis revealed that in 

bacteria, environmental properties of the lakes and differences in mean temperature 

could significantly explain the observed patterns, while in eukaryotes, the lack of 

connectivity between the ice-free regions appeared to put additional constraints on 

OTU-richness.  

 

 

 

Figure 7: Local OTU richness after standardization for the number of sequences per sample 

against latitude. 

 

In addition to this pattern in microbial diversity, distinct biogeographic zones could be 

recognized in the distribution patterns of both eukaryotes and bacteria, based on 

multivariate ordination and clustering techniques (Figure 8). Northern and southern 
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hemisphere communities were clearly distinct in eukaryotes, while the 

bioregionalisation within the southern hemisphere was largely in agreement with the 

classical subdivision of the Antarctic Realm into Maritime Antarctica, Continental 

Antarctica and the sub-Antarctic Islands generally observed in plants and animals. For 

bacteria, however, northern and southern hemisphere communities were still distinct, 

but interhemispheric segregation was less clear than in eukaryotes.  

 

 

 

 

 

 

 

Figure 8. Heatmap showing a sample by sample matrix, ordered following their geographical 

location and proximity, while intersecting cells were colour-coded according to the ecological 

dissimilarities between individual lakes (Bray-Curtis, based on presence-absence data). Only 

samples with sufficient sampling depth (>4,500 sequences) for both eukaryotes (upper triangle) 

and bacteria (lower triangle) are shown. In eukaryotes, community differences between the 

Arctic, Antarctic and Sub-Antarctic clearly surpass those within regions. Also in Bacteria, there is 

a major geographic grouping, although Sub-Antarctic lakes resemble Northern Hemisphere sites 

more closely than Antarctic ones. 

 

In total, 19% of the bacterial communities did not cluster according to hemisphere, 

while this was only 5% for the eukaryotes. This was mainly due to the relative high 

similarities of bacterial assemblages in Svalbard to Continental Antarctic communities, 

while several Macquarie lakes (Sub-Antarctica) also clustered together with microbial 
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mats from Norway. These biogeographic patterns were found using both presence-

absence and abundance data, suggesting that the relative large timeframe in which 

samples were collected did not significantly affect the relative abundances of taxa, 

which could have shifted due to degradation of DNA or continued growth. 

The proportion of bipolar OTUs and those restricted to one of the three biogeographic 

regions varied considerably between the different phylogenetic groups. The fraction of 

bipolar OTUs at the 97% sequence similarity was 34.9% for eukaryotes and 43.4% for 

bacteria, respectively. While for Bacteria these numbers are similar to recently reported 

estimates (Kleinteich et al., 2017), the proportion of OTUs restricted to each of the three 

regions varied. In Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria, the 

number of OTUs restricted to Antarctica was 1.3 to 15.3 times higher than for the other 

two regions. For Chloroflexi and Cyanobacteria, and all eukaryote clades (except 

Cercozoa), the number of OTUs restricted to the Arctic was highest. In Cercozoa, more 

OTUs uniquely occurred in Sub-Antarctica than in the two other regions. 

Detailed analysis of the major phyla in the dataset showed that the two sub-Antarctic 

islands were generally highly differentiated, except for Dinophyta, Streptophyta, 

Chloroflexi and Cyanobacteria. This may be the result of high dispersal or low 

phylogenetic divergences in these groups, but could also be related to the relatively low 

diversity (e.g. few Cyanobacteria on Marion Island). Community composition differences 

between maritime and continental Antarctic lakes were not larger than differences 

between communities within these regions (except for Metazoa and Streptophyta) at the 

97% similarity level. Moreover, at a geographically fine-grained level, biogeographic 

zoning along the Antarctic Conservation Biogeographic zones (ACRBs) proposed by 

Terauds et al. (2012) was not well-defined. This may indicate that the community 

turnover along the Gressitt line boundary (Chown et al., 2007) or within continental 

Antarctica (Terauds et al., 2012) is less strong for microorganisms, for instance because 

of local wind transportation. Alternatively, the pronounced biogeographic divergences 

in species or OTU composition documented by other studies may here be obscured by 

insufficient taxonomic resolution at the 18S and 16S rRNA gene barcodes. For instance, 

the degree of endemism of nematodes in Victoria land (South-west Antarctic continent) 

should be extremely high  (Adams et al., 2014) but several OTUs clustered at 97% 

sequence similarities had global distribution, which indicates lumping of closely related 

species (Bik et al., 2010). 
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3.4. Amplicon sequencing of environmental 16S rRNA genes for the  

Cyanobacteria 

 

3.4.1. Evaluation of bioinformatics pipelines using artificial communities 

A total of 61,419 reads were obtained for the two artificial communities (34,213 and 

27,206 reads for Art1 and Art2, respectively). After applying the bioinformatics pipelines 

between 15,820 and 25,105 reads remained, representing a decrease of up to 47% from 

the original number of reads. Observed relative abundances differed from the theoretical 

expectations and were similar in communities Art1 and Art2, despite differences in the 

initial proportions of each template DNA (Figure 9). Recovered relative abundances 

were also consistent across the different pipelines. In general, a number of strains were 

three to six times more abundant than expected (e.g. Phormidesmis priestleyi 

ANT.L52.6 (ULC026), whereas others were underrepresented (e.g. L. frigida 

ANT.L53B.1 (ULC001)). 

 
Figure 9. Recovered relative abundances of reference strains in artificial communities Art1 (a) 

and Art2 (b) after application of each bioinformatics pipeline. Relative abundances were 

computed taking into account only OTUs classified as “Perfect” or “Good” (i.e., with ≥99% 

similarity to a reference sequence). Remaining OTUs (“Noisy,” “Other” and “Chimeric”) are 

grouped under “Spurious OTUs.” 

 

Inferred phylotype richness varied considerably between pipelines (Figure 10). 

Phylotype richness obtained with the mothur-based pipelines (pipelines I-III) was 

surprisingly high (98–261 OTUs), and rarefaction curves suggested that it would be even 
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higher with increased sequencing depth. OTU richness was much lower (16–21 OTUs) 

with the UPARSE-based protocols (pipelines IV-V), with rarefaction curves reaching a 

plateau at around 1,000 sequences. Even at this lower sequencing depth, OTU richness 

reported by the mothur-based pipelines was 2–3 times higher than expected. The 

number of biologically relevant OTUs (“Perfect” and “Good,” therefore with ≥99% 

similarity to a reference sequence) was similar for all pipelines (15–24 OTUs), meaning 

that all of them were able to identify the real taxa). However, the mothur-based 

protocols reported a high number (82–237 OTUs) of additional spurious phylotypes 

(“Noisy,” “Other” and “Chimeric” OTUs). Although these spurious phylotypes 

accounted for a small proportion of the dataset (0.2%–5.1% of the reads; Figure 9), they 

contributed significantly to the overestimation of phylotype richness since their 

divergent sequences are perceived as new OTUs (Figure 10). In contrast, phylotype 

richness reported by the UPARSE-based protocols was in line with expected results, 

consisting of 15–16 OTUs with ≥99% similarity to a reference sequence and only 1–5 

additional spurious OTUs. Thus, the latter protocol was selected for future analyses. 

 

 

 

Figure 10. Classification of OTUs in artificial communities Art1 (a) and Art2 (b) after application 

of each bioinformatics pipeline (see Pessi et al.2016). OTUs were classified as “Perfect” 

(identical to a reference sequence), “Good” (≥99% similarity), “Noisy” (≥97.5% to <99% 

similarity), “Other” (<97.5% similarity) and “Chimeric” (composed of two or more parent 

reference sequences). 

 

3.4.2. Spatial patterns of Antarctic lacustrine cyanobacterial communities 

For the 454 pyrosequencing run, a total of 249,191 reads with an average length of 410 

bp were obtained for 13 microbial mat samples. After removal of low-quality and 

chimeric sequences 177,482 sequences (71.2%) remained. From these, 578 sequences 

(0.3%) were assigned to plastid sequences of eukaryotes, and 788 sequences (0.4%) to 

other bacterial phyla such as Acidobacteria, Chloroflexi, Planctomycetes, TM7 and 
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Verrucomicrobia. Remaining cyanobacterial sequences (176,116 reads, 99.3% of the 

quality-filtered reads) were grouped into 112 OTUs at 97.5% similarity. 

Pseudanabaenales comprised the majority of the OTUs (61 OTUs, 54.5%), followed by 

Oscillatoriales, Synechococcales (11 OTUs each, 9.8%), Nostocales (10 OTUs, 8.9%) 

and Chroococcales (8 OTUs, 7.2%). Eleven OTUs (9.8%) were not classified at the 

order level. In general, EL land lakes were highly dominated by Pseudanabaenales 

OTUs, which made up an average of 95.9% of the quality-filtered reads in these lakes 

(Figure 11). Nostocales and Chroococcales OTUs were only observed in EA lakes 

(average of 1.8 and 1.0% of the reads, respectively). 

 
Figure 11. Cyanobacterial community structure summarized at the order level. Numbers above 

bars represent the total phylotype richness in each sample. 

 

In order to perform beta diversity analyses, pairwise lake physicochemical distance were 

calculated after log(x+1) transformation (except pH) and standardization, pairwise 

geographic distance between lakes was computed based on GPS coordinates using the 

Geographic Distance Matrix Generator (available in 

http://biodiversityinformatics.amnh.org/ open_source/gdmg) and pairwise cyanobacterial 

community similarities were assessed based on Bray-Curtis distances after square root 

transformation of OTU abundance data. Analyze of variation in community structure 

(UPGMA) discriminated between three community groups, each comprising lakes from 

different ACBRs (Figure 12). Cluster I was composed by communities from higher 

conductivity lakes, cluster II consisted of communities from lakes with enriched DOC 

content, and cluster III included the remaining (freshwater and oligotrophic) lakes. As 

http://biodiversityinformatics.amnh.org/
http://biodiversityinformatics.amnh.org/
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suggested by the UPGMA clustering, community structure was unrelated to geographic 

distance but was strongly correlated with overall lake physicochemical composition 

(RELATE (non-parametric version of Mantel test); ρ = 0.19, p > 0.05 and ρ = 0.61, p = 

0.001, respectively). Distance-based linear models (distLM) with forward selection based 

on the adjusted R2 criterion were further applied in order to investigate the importance 

of individual physicochemical parameters. Conductivity significantly explained 24.1% 

of the variation in community structure between lakes (distLM, p = 0.001). The effect of 

DOC was marginally significant (17.4% of the variation, p = 0.09) and remaining 

physicochemical parameters had no influence in community structure (p > 0.05). 

Overall, community structure was best explained by conductivity, NO3, SiO4, pH, TOC 

and DOC, which explained together 78.6% of the variation between lakes. Other 

studies already suggested that conductivity/salinity is an important factor structuring the 

communities, not only of cyanobacteria (Fernandez-Carazo et al., 2011; Jungblut et al., 

2005; Taton et al., 2006a) but also of diatoms and other microeucaryotes (Sabbe et al., 

2004; Verleyen et al., 2010). 

From the 112 OTUs found, 37 OTUs (33.0%) were related (≥99% similarity) to 

sequences with a wide global distribution and were thus classified as “Cosmopolitan” 

OTUs. The remaining phylotypes (79 OTUs, 77.0%) appeared restricted to the cold 

biosphere. More specifically, 42 OTUs (37.5%) had no related sequences in GenBank at 

a 99% similarity threshold (“Novel” OTUs) and are thus considered as potentially 

endemic; 20 OTUs (17.9%) were only related to sequences coming from Antarctic 

biotopes (potentially “Endemic” OTUs); 6 OTUs (5.4%) have a bipolar distribution 

(“Polar” OTUs); and 7 OTUs (6.3%) also included hits from high altitude regions such as 

the Alps, the Andes and the Himalaya (“Polar/Alpine” OTUs). The 10 most abundant 

OTUs (OTUs 1–9 and OTU16, comprising together 83.1% of the quality-filtered reads) 

had cosmopolitan distributions. Cosmopolitan OTUs were generally more abundant 

(average of 2.4% of the quality-filtered reads) and appeared in more samples (4.1 

samples in average) than endemic (0.2% of the reads, 2.6 samples in average) and novel 

OTUs (0.1% of the reads, 2 samples in average). 
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Figure 12. Unweighted pair group method with arithmetic mean (UPGMA) analysis based on 

pairwise Bray Curtis distances between cyanobacterial communities.  

 

Lakes from different, geographically distant ACBRs appear to harbor comparable 

cyanobacterial communities (Figure 12). For example, Col1 (AP) was clustered alongside 

with Lake L59b and Waterfall Lake (EA), located ca. 2,880 and 3,000 km away, 

respectively. In comparison with larger organisms, the low effect of distance on the 

continent supports the dispersal of cyanobacterial propagules between the different 

Antarctic ice-free regions (Jungblut et al., 2010). However, the presence of a large 

proportion of OTUs with a restricted distribution in Antarctica suggest that life may have 

persisted in glacial refugia such as inland nunataks and coastal oases, which have 

remained ice-free during past glaciations (Convey et al., 2008; Strunecký et al., 2012). 

For the Illumina sequencing run, a total of 7.808,519 high quality reads (max error= 

0.5; 370 bp) were obtained for the 94 samples. A total of 974 OTUs was affiliated to the 

phylum of Cyanobacteria including plastidial OTUs and OTUs affiliated to the 

Melainabacteria, using the RDP database. The total number of cyanobacterial OTUs 

(including Melainabacteria) was 796 (Figure 14A). Finally, the 534 OTUs having a 

minimum of 5 counts in all samples were further analyzed by BLAST and phylogeny 

analyses. Total numbers of OTUs were consistent between duplicates. 

Pairwise cyanobacterial community similarities (OTU abundance matrix) and pairwise 

lake physicochemical distances (pH and conductivity) were calculated as described for 

the pyrosequencing. The geographic distance matrix were transformed (package 

geosphere, R) in spatial variables named Principal Coordinates of Neighborhood Matrix 

(PCNM) eigenvectors (Borcard et al., 2002) using R (package vegan). Each PCNM 

represents geographic information at a different scale (Figure 13). With these spatial 
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variables, the effect of pH and conductivity on cyanobacterial communities at different 

spatial scales was calculated. 

 
Figure 13: Visualisation of the PCNMs variation with geographic distance. Each PCNM represents a 

different scale of spatial variation. For example, PCNM1, PCNM6 and PCNM16 explain spatial 

variation at a scale of 2000 to 3000 kms, 100 to 1000 kms and 10 to 100 kms, respectively. 

 

Correlation tests (permutation test on distance based redundancy analysis (McArdle et 

al., 2001)) between cyanobacterial community structure and geographic distance, pH 

and conductivity give different results in function of the geographic scales we focus on 

(TABLE II).  

 

TABLE II. Mantel test (Mantel r and P-value) and variation portioning (Varpart) at two different 

spatial scales. Variation partitioning is calculated using adjusted R-squared from distance-based 

redundancy analysis in R (package ”vegan”). 

Area scale geographic distance conductivity pH 

 Mantel 

r 

P-value Varpart 

(%) 

Mantel 

r 

P-value Varpart 

(%) 

Mantel 

r 

P-value Varpart 

(%) 

Antarct. + sub-Ant. Islands 0.33 < 0.001 17.5 0.1 0.035 1.7 0.14 < 0.001 1.4 

Antarctica 0.27 < 0.001 12.2 0.14 0.014 3 0.09 0.016 2.5 

 

At the largest scale (Antarctica and sub-Antarctic islands), the OTU richness shows a 

strong correlation with the geographic distance and a lower correlation with pH and 

conductivity. Indeed, 17,5% of the cyanobacterial community structure variation 

appears explained by the geographic distance. This variation is more important between 

distant cyanobacterial communities (from 1000 to 2000 kms) than between community 

separated by 10 to 100 kms or less. In contrast, conductivity only explains 1.7% of the 

variation and is not much correlated to geographic distance (29% shared with PCNM9). 
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Indeed, linear regression of the abundance of OTUs with conductivity reveals that 18 of 

the 534 OTUs (3.36 %) are significantly distributed in respect to the conductivity (p-

value < 0.05, Fisher test). pH explains only 1.4% of the variation and is completely 

spatially structured (100% shared with PCNM1). 

When the analyses are performed at the continental scale, the effect of geographic 

distance decreases whereas conductivity and pH shows an inverse trends (TABLE II). 

By decreasing the spatial scale from the largest to regional scales, the effect of 

geographic distance is replaced progressively by the impact of environmental 

parameters.  

By zooming even more, the analysis results are also different according to the regions. 

For Dronning Maud Land, North East Antarctic Peninsula, Macquarie Island and Marion 

Island, there is no significant correlation between the structure of cyanobacterial 

communities and the parameters tested (geographic distance, conductivity and pH).  For 

North Victoria Land, geographic distance is explaining 12% of the abundance 

variations. For East Antarctica, Enderby Land and South Victoria Land, the conductivity 

appears to structure the cyanobacterial communities, explaining respectively 6.7%, 12 

% and 18 % of the abundance variation. Analyses were not performed for the 

Transantarctic Mountains and North West Antarctic Peninsula because there were 2 and 

3 samples, respectively, which is not sufficient. Unfortunately, the pH and salinity were 

the only lake parameters available for the 94 samples, and the analyses show that other 

factors that are not available for this study must play a role to explain the community 

structures.  
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Figure 14. OTUs distribution according to RDP taxonomic affiliation. A. Number of OTUs per 

phylum (Total=3768), B. Number of cyanobacterial OTUs per order (Total= 247), C. Number 

of OTUs per genus among Pseudanabaenales (Total=139). 

 

Looking at the distribution of the OTUs, 4 OTUs are only present in the sub-Antarctic 

islands (0.7% of the 534 OTUs). In contrast, 82 of the 534 OTUs (15.3%) appear only 

present on the Antarctic continent (potentially endemic). 

The 247 most abundant cyanobacterial OTUs (including Melainabacteria) representing 

99.03% of the reads were selected to perform more focused analyses. Briefly, a majority 

(56.28%) of these OTUs belongs to the order Pseudanabaenales and gathered 72.9% of 

the total number of cyanobacterial reads (Figure 14B). Besides, Pseudanabaenales were 

dominated by OTUs belonging to the genus Leptolyngbya (Figure 14C). More precisely, 

OTU 1, which was 99.7% similar to Phormidesmis sp. HOR_11_6 (KU219729) was 

represented by 490310 reads which was 1,7 times the total number of OTU 2 (100% 

similar to Timaviella sp MH688850). OTU 1 appeared to be present in all our samples 

regardless of the region, pH, or conductivity.  

For these 247 most abundant OTUs, preliminary multivariate analysis confirmed a 

significant difference between cyanobacterial community structures from sub Antarctic 

islands and the Continent (Figure 15). This observation seems in agreement with 

observations made with the heatmap analysis. 
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Figure 15. Representation of the first two axis of the Correspondance Analysis using the 

cyanobacterial community structure (247 most abundant OTUs) showing the distinction 

between the Antarctic continent and the sub-Antarctic islands. 

 

A heatmap analysis was performed on the matrix of the relative abundances of 

Pseudanabaenales OTUs (Figure 16). At this taxonomic resolution, our samples were 

divided in two major clusters. The cluster I consists of samples from the maritime and 

Sub-Antarctic regions. In these samples, the OTUs richness and abundances were higher 

than in samples from cluster II. The cluster II is composed by samples from the 

continent. In these samples, the Pseudanabaenales community is often dominated by 

only one OTU, as shown by the subclustering of cluster II. 
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Figure 16, Heatmap showing a sample by sample matrix of Pseudanabaenales OTUs relative 

abundances using relatice CDM in R. Clustering was performed using Euclidean distances. 

 

In the present study, a significant fraction of the phylotypes found were associated with 

cyanobacterial lineages currently restricted to Antarctica (“Endemic” OTUs, 17.9% for 

the pyrosequencing study, 10.5% for the Illumina study) and phylotypes which had no 

related (99% similarity) sequences in GenBank (“Novel” OTUs, 37.5% for the 

pyrosequencing study, 51.8% for the Illumina study). Similar results have been reported 

for cyanobacterial communities in other Antarctic lakes (Taton et al., 2006a, 2006b), as 

well as for diatom and green algal communities (De Wever et al., 2009; Sabbe et al., 

2004; Vyverman et al., 2010, this report). The high level of endemism observed within 

Antarctic cyanobacterial communities provides additional evidence for an ancient, pre-

Holocene origin for a meaningful portion of the contemporary Antarctic cyanobacterial 

biodiversity. 

On the other hand, another fraction (33.0% for the pyrosequencing run, 34% for the 

Illumina run) of the cyanobacterial communities consisted of phylotypes with a current 

cosmopolitan distribution, suggesting that cyanobacterial propagules are dispersed 

globally, including to and from Antarctica. These may be transported to Antarctica by 

the wind or migratory birds (Pearce et al., 2009) and likely portrait contemporary 

colonization events. An interesting trend observed here was that highly abundant and 

frequent OTUs were usually cosmopolitan, while rare OTUs were usually novel or 

endemic. This could be explained by differences in dispersal ability between 

cyanobacterial taxa, with cosmopolitan taxa being better adapted to transportation and 

dispersal (Taton et al., 2006a; Vyverman et al., 2010). In addition, populations of rare 
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taxa would have a lower probability to successfully disperse to a different environment 

in comparison to abundant ones (Fierer et al., 2010). 

 

3.5. Phylogeographic studies of focal taxa 

 

3.5.1. Isolation and characterization of selected bacterial strains 

Focus was on bacteria of the genera Deinococcus and Flavobacterium as these groups 

had previously (BELSPO AMBIO project) been found to be well represented with many 

new, potentially endemic species. Three soil samples from Utsteinen, KP2, KP15 and 

KP43, were used. One gram of sample was used to make a dilution series that was 

plated on R2A and 1/10R2A media. Plates were incubated at 15 and 20°C and red 

(possible Deinococcus) and yellow (possible Flavobacterium) colonies were purified. 

Isolates were grouped by MALDI-TOF MS and representatives were identified by partial 

16S rRNA gene sequence analysis.  

A total of 199 colored isolates were characterized and assigned to the following genera: 

Hymenobacter (24%), Arthrobacter (21%), Sphingomonas (18%), Deinococcus (16%), 

Roseomonas (5%), Spirosoma (4%), Pedobacter (4%), Modestobacter (3%), 

Novosphingobium (1%), Noviherbaspirillum (1%), Brevundimonas (1%), 

Sandarkinorhabdus (1%), Rhodococcus (1%), Nakamurella (1%) and Adhaeribacter 

(1%). Five isolates (3%) could not be identified. Thirty-two isolates were assigned to 

Deinococcus and, surprisingly, none to Flavobacterium.  

For the molecular phylogenies of housekeeping genes, we focused on Deinococcus 

because no new Flavobacteria isolates were recovered. Previous results (AMBIO project) 

had indicated that many of the Deinococci isolated are potentially restricted to 

Antarctica and thus adapted to cold temperatures. Using sequence data retrieved from 

genomes available in public databases, amplification primers for the housekeeping 

genes rpoB, gyrB, purA, dnaK, tdh and recA were designed and used to amplify and 

sequence these genes in newly obtained isolates. Maximum likelihood phylogenetic 

analysis was performed using MEGA software. 

Based on the phylogenetic relationships of the partial 16S rRNA gene (~350 bp) of 

Antarctic Deinococcus isolates with those of reference strains of known Deinococcus 

species, we had previously established that the Antarctic strains seemed to represent at 

least 10 potentially novel species as well as the previously described species D. saxicola 

and D. marmoris (Peeters et al., 2011). To improve the confidence in these groupings, 

we completed the 16S rRNA gene sequences (~1350 bp) and this confirmed the 

previous lineages and indicated a few more potential new species. Because 16S rRNA is 

a conserved marker, we compared with the phylogenies of the selected more variable 

housekeeping genes to assess the novel groups. Primers for rpoB and gyrB performed 

best, yielding PCR products for all strains tested, while for purA, dnaK, tdh and recA, a 
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portion of the strains failed to yield an amplicon. The reason may be the large number of 

ambiguous positions in some of the primers. The phylogenetic analysis of all the genes 

confirmed the existence of the same individual groups. However, the available reference 

data for housekeeping genes is limited and therefore the distance to existing species 

could not be confirmed clearly. As an example, the rpoB phylogeny is shown in Figure 

17.  

 

Figure 17. Maximum likelihood tree based on rpoB sequences (705 bp) of Deinococcus strains. 

The Tamura-Nei substitution model was used in MEGA. Bootstrap values at branching points are 

based on 500 replications. Cluster numbers refer to our groups of Antarctic isolates. 
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With the increasing availability of whole genome sequences, and the declining cost in 

sequencing whole genomes, it can be anticipated that more data for comparison will 

become available or can be obtained in follow-up research. Availability of the whole 

genome sequences of our own isolates will allow description of new species. For this 

purpose, we have already determined fatty acids profiles and some phenotypic 

characterization of representative strains of the new groups.  

 

3.5.2. Isolation and characterization of cyanobacterial strains 

The selected cyanobacterial strains clustered in 4 main lineages according to the rpoC1 

phylogeny (Figure 18).  

 

 
Figure 18. rpoC1 phylogeny (501 bp) of Antarctic cyanobacterial strains. The ML tree was 

constructed using RAXML with GTR G+I model. Bootstrap values at branching points are based 

on 1000 replications. Cluster numbers refer to our groups of Antarctic isolates. 

 

The first cluster (I) is composed by nine strains previously described as Phormidesmis 

priestleyi (Taton et al., 2006b) from 3 different regions (Dronning Maud Land, East 

Antarctica, and Transantarctic Mountains). This group of strains also included 

Phormidium D1 (from a cave in Greece) and Phormidesmis sp. WJT36-NPBG28 (Czech 

Republic) that had a 16S rRNA similarity ranging from 97.1% to 100% with our 
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Antarctic strains and also correspond to the genus Phormidesmis (Komárek et al., 2009). 

According to the rpoC1 phylogeny, the nine Antarctic strains were subdivided into three 

groups plus two isolated strains but there was no relation with the geographic origin 

(Figure 18). The second cluster (II) included 6 Leptolyngbya antarctica strains (ULC017, 

ULC031, ULC32, ULC036, ULC037, ULC043) that had identical rpoC1 sequences but 

shared only 78.8% rpoC1 and 91-91.2% 16S rRNA similarity with the most closely 

related strain, Leptolyngbya antarctica ULC023. The third clade (III) was composed by 

strains assigned to different morphotypes. However, the Antarctic strains in this cluster 

shared between 96.3% and 100% 16S rRNA similarity and 83.4% to 100% rpoC1 

similarity, and thus, probably belong to the same genus. Finally, the fourth clade (IV) is 

composed of 5 Antarctic strains previously named as L. antarctica but that should be 

renamed as Nodosilinea sp. because they share 16S rRNA similarities > 96.1% with 

several non-Antarctic strains that belong to Nodosilinea sp. (Perkerson et al., 2011). 

Besides, they formed a well-supported clade according to the rpoC1 phylogeny, 

including a well-supported sub-cluster of four Antarctic strains (ULC041, ULC047, 

ULC073, and ULC090) from the Larsemann Hills, Transantarctic Mountains and 

McMurdo Ice Shelf. Genetic analyses using rpoC1 and 16S rRNA sequences allowed an 

improvement in the characterization of strains from the problematic polyphyletic genera 

Leptolyngbya and Phormidium, which represent the two dominant OTUs observed in 

our HTS environmental surveys (task 2.4.). However, no clear sub-clustering was 

observed according to the strain‖s bioregion origin.  

The ITS phylogenies allowed to reconstruct the sub-clustering of strains within each of 

the studied lineages. However, this clustering was similar to the one observed with the 

rpoC1 phylogeny. 

The occurrence of nifH/D genes was observed in the cluster of Leptolyngbya antarctica 

(clade II) leading to the hypothesis that strains from this clade are potential nitrogen 

fixers. This is important as, till now, Nostoc was considered to be the only nitrogen-fixer 

in Antarctic biotopes. 

For the genome of the Antarctic axenic strain ULC007 (Phormidesmis priestleyi), the first 

Illumina run generated 4,404,753 reads, and the second run generated 8,628,205 reads. 

Final assembly using the CISA3 assembler led to 45 contigs ranging from 1530 to 

495420 bp length, for a total length of 5,262,658 bp (48.8 %GC). The genome was 

annotated with RAST (Aziz et al., 2008). This leads to the prediction of 5975 coding 

sequences grouped in 393 subsystems (Lara et al. 2017). Three subsystems have been 

studied in more detail because they are often associated with organisms growing in cold 

biotopes (Fatty Acid Biosynthesis FASII, Oxidative stress, Protection from Reactive 

Oxygen Species (ROS)). The number of protein-encoding genes (pegs) for each 

subsystem is distributed as followed: 27 in Fatty Acid Biosynthesis FASII, 31 in 

Oxidative stress, 4 in Protection from Reactive Oxygen Species. For the subsystems 
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―Fatty Acid Biosynthesis‖ and ―Protection from ROS‖, the strain ULC007 does not show a 

particular pattern in comparison to the genomes in other lineages in the public 

databases.  

However, for the ―Oxidative stress‖ subsystem, a high number of pegs is observed for the 

order Oscillatoriales and is particularly high for the Phormidiaceae family (Figure 17). 

Indeed, 3 pegs coded for the HPIIb (Catalase) and 6 pegs coded for Crp transcriptional 

regulator, in the Crp/Fnr family. The catalase is an enzyme involved in the degradation 

of hydrogen peroxide whereas the transcriptional regulator of type Crp/Fn regulates 

various metabolic pathways in bacteria and typically functions in response to 

environmental stresses (oxidative, osmotic, etc.) (Zhou et al., 2012). Besides HPIIB and 

Crp for the Phormidiaceae, 2 other pegs are involved in 3 different roles: Fr 

(Ferroxidase), IBP (Iron-binding ferritin-like antioxidant protein) and Dps (Non-specific 

DNA-binding protein). Dps protects cells from oxidative stress by binding directly to the 

DNA (Martinez et al., 1997). Another interesting parameter is the relative importance of 

the oxidative stress response genes within the genome‖s features. It can be 

approximately evaluated by computing the ratio between the number of pegs for the 

oxidative stress subsystem and the total number of pegs within the genome (ratio_OX). 

ULC007 shows a relatively high ratio_OX within cyanobacteria and Oscillatoriales and 

the highest ratio_OX of the Phormidiaceae family. Strains which have the smallest 

ratio_OX grow in the marine environment where conditions are stable. However, the 

strains with the highest ratio_OX have been isolated from freshwater habitats where 

environmental conditions are variable (lakes, rivers and streams).  

Finally, 13 clusters potentially encoding for the biosynthesis of unknown secondary 

metabolites were identified. It included NRPS, PKS, NRPS/PKS, and bacteriocin clusters. 

This type of clusters is probably responsible for the antibacterial and antifungal activities 

observed by Taton et al. (2006b) in strain ULC007. 

The lack of enough genomes from Antarctic representatives and the paucity of 

calibration priors is complicating the attempts to achieve molecular clocks using 

multiple loci. A 16S rRNA molecular clock analysis was perfomed with a selected strain 

dataset which includes the Antarctic P. priestleyi ULC007 and its Arctic relative 

BC1401. This analysis suggested that divergence between the two polar strains occurred 

at least 700 Ma before the division of the Gondwana (1.6 – 0.8 Ga) (Figure 19). 

However, large deviations in node ages‖ estimates are observed. 
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Figure 19. Relaxed molecular clock using partial 16S rRNA, root prior was set at 3.8 Ga. 

Akinetes were used as calibration prior (2.1 Ga) to support the Nostocales clades. 

 

3.5.3. Phylogeography of diatoms 

About 300 monoclonal diatom cultures of Pinnularia borealis, a cosmopolitan species 

complex, were established from various Maritime Antarctic, Arctic and Alpine regions, 

including Svalbard, James Ross Island and the South Shetland Islands, and added to the 

existing dataset (Souffreau et al., 2013)(Figure 20). Currently, 22 different lineages of P. 
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borealis are distinguished in the phylogenetic tree, with the Maritime Antarctic region 

exhibiting a relatively high regional diversity being home at 10 different lineages of 

which several are new to science and in need of formal species descriptions. Whereas 

some lineages seem to have a rather restricted distribution, others have been found on 

several continents and might be truly cosmopolitan. Future planned expansions of the 

phylogeny including strains from other (polar) regions should allow gaining more insight 

in the diversity and biogeography of this species complex. 

 
Figure 20: Maximum likelihood molecular phylogeny based on D1-D3 LSU rDNA with 

indication of bootstrap values (≥70) and posterior probabilities, showing the major lineages of 

P. borealis (consensus from three different automatic species delimitation methods: GMYC, 

statistical parsimony network analysis and bayesian PTP) . 
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3.5.4. Phylogeography of green algae 

Strains from the 18S rRNA type EO2-14, II-11, VPL6-4, B6-6, WO1L-3 were isolated 

from lakes in Maritime and Continental Antarctica (De Wever et al., 2009) and coupled 

to the dataset of Dr. K. Sciuto, Dr. I Moro, and Dr. N. La Rocca (University of Padova, 

Italy) which contained the 18S rRNA sequences of the Gondwana strain stored in the 

International Nucleotide Sequence Database  (INSD) with the accession number 

AM419228. 

A new Scenedesmacean species from Antarctica was described, Chodatodesmus 

australis Sciuto, Verleyen, Moro & La Rocca, in collaboration with the team from the 

University of Padova and based on molecular and phylogenetic analyses of the ITS2 

spacer, rbcL gene, and tufA gene. Morphological (light microscopy and scanning 

electron microscopy) and ultrastructural observations carried out both on the holotype 

of C. australis and on the generitype of the genus Chodatodesmus Hegewald, Bock & 

Krienitz allowed us to emend the original description of this genus (Sciuto et al., 2015). 

 

3.5.5. Comparison of evolution of microbial and multicellular organisms 

HTS of Arctic and Antarctic lakes, as well as morphology based inventories of the 

diatom community structure in lakes from the Antarctic Realm revealed a number of 

striking similarities with patterns found in multicellular organisms. First, HTS of bacteria 

and eukaryotes revealed clear bipolar differences in microbial community structure 

between the Arctic, Antarctica and the sub-Antarctic Islands (Figure 8).  

 
 
Figure 21. Heatmap showing a sample by sample matrix of metazoan sequences, ordered 

following their geographical location and proximity, while intersecting cells were colour-coded 

according to the ecological dissimilarities between individual lakes (Bray-Curtis, based on 

presence-absence data for the upper triangle, and abundances for the lower). See Figure 8 for 

colour coding. 

http://www.ddbj.nig.ac.jp/intro-e.html#insd
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When only the metazoan sequences from the HTS database are analysed separately 

(Figure 21), the patterns are highly congruent.  

Second, the percentage of diatom species endemic to Antarctica (74 ± 16% in 

Continental Antarctica, 61 ± 9% in Maritime Antarctica, and 46 ± 13% in the sub-

Antarctic Islands) is highly similar to numbers found in multicellular organisms. More in 

particular, approximately 30 to 50% of the lichens are endemic (Peat et al., 2007) and 

up to 58% of the free-living fauna is considered to be endemic to Antarctica (Pugh et al., 

2008). In Tardigrades the proportion of endemic species is more than 80% (Guidetti et 

al., 2017) and for rotifers this is even thought to exceed 95% (Iakovenko et al., 2015). 

Third, the biogeographic zoning in freshwater diatoms of the AR is highly congruent 

with that in multicellular terrestrial taxa (Chown et al., 2007 ; Figures 1, 5). Diatom 

floras in Continental Antarctica, Maritime Antarctica and the sub-Antarctic Islands are 

each characterised by specific species and have only few species in common. In 

addition, pronounced differences in diatom community structure between the different 

oceanic provinces and ACBRs  (Terauds & Lee, 2016; Van der Putten et al., 2010) within 

Sub-Antarctica, and Maritime and Continental Antarctica, respectively.  

Combined, these data point to a common evolutionary history of microorganisms and 

macroscopic taxa. Hence, the strong biogeographic structuring in our datasets is likely a 

reflection of the high degree of geographic isolation and polar climatic conditions, as 

well as the timing and rate of deglaciation of the different ice-free regions (Convey et al., 

2008; Fraser et al., 2014). The importance of isolation and hence dispersal limitation 

was indeed confirmed by the variation partitioning analysis in the diatom dataset, which 

revealed that historical and spatial factors independently explained a significant (and the 

largest) portion of the variation in diatom community structure between the lakes. In 

addition, multiple regression analysis revealed that the number of endemic diatom 

species can be significantly explained by differences in temperature and geographic 

isolation, and hence dispersal limitation. This, together with the strong 

bioregionalisation patterns observed, has a number of important implications for 

conservation planning (Chown et al., 2015; Fraser et al., 2014). First, management plans 

for terrestrial ice-free regions and their lakes should include measures to prevent the 

introduction of non-native microbes into the AR, as exotic taxa might potentially affect 

local communities and competitively exclude endemic and sometimes rare species 

(Cowan et al., 2011). Second, because our data revealed that different ACBRs and 

oceanic provinces are characterized by highly dissimilar diatom communities and few 

species are shared between regions, also the unintentional transportation of 

microorganisms from one region to another should be avoided in order to protect 

regions against increased homogenization of their diatom floras. This evidently requires 

more stringent measures than those currently taken by national scientific program 

managers and tourist operators (Hughes et al., 2018). Considering the steady increase in 
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tourism and scientific activities in the AR (Coetzee et al., 2017), as well as forecasted 

climate and environmental changes (Lee et al., 2017) render this issue a high priority on 

the international conservation agenda.  

 

3.6. Functional genetic and biochemical capacities 

 

3.6.1. Metagenomics 

In total, we obtained 118.5 million 2x 125bp raw reads (on average 39.5 +-2.9 M reads 

per sample). An inhouse pipeline was tested to process and analyze these data. 

Preliminary analyses showed that bacteria accounted for the majority of the diversity 

(Figure 22). At the phylum level, the groups Proteobacteria, Bacteroidetes and 

Actinobacteria, which are typically found in lakes (Newton et al., 2011), accounted for 

most reads. In the littoral sample naga1, Cyanobacteria (Nostoc) were also relatively 

abundant, while naga5 and naga6, from respectively 5 and 10 m deep contained more 

Acidobacteria and DNA viruses. These two latter samples showed a higher similarity in 

bacterial community composition compared to the most shallow sample. Interestingly, 

Archaea were, however, found only in the naga5 sample. Clear differences in functional 

potential were noticeable between the different depths. The shallow sample was 

dominated by genes involved in lipid, amino acid, fatty acids transport and metabolism. 

The middle depth was dominated by genes involved in carbohydrate metabolism related 

to carbon fixation, DNA metabolism and photosynthesis pathways. The deepest sample 

was characterized by genes involved in cell wall biogenesis and signal transduction 

mechanisms.  

 
Figure 22. Relative abundance of Archaea, Eukarya, Bacteria and Viruses/viroids, based on the 

analysis with Metaphlan. 
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Because Antarctic ecosystems are notoriously oligotrophic and nitrogen availability is 

potentially limited, we focussed on the nitrogen pathways of these samples. Nitrogen 

fixation genes were most abundant at depths 1 and 3, although the actual genes present 

differed with nifH and nifD being abundant at depth 3, while nifK and nifN were 

dominant in the shallow sample. Genes involved in denitrification (norB and nirK) were 

also more present in this shallow sample. Dissimilatory nitrate reduction to ammonium 

(DNRA), an anaerobic pathway, was clearly more present in the deeper samples (Figure 

23), and especially in the deepest sample. This might indicate that oxygen availability is 

limited or even absent in this part of the lake, and likely the result of the accumulation 

of dead organic matter. A further analysis of pathways involved in remineralization or 

anaerobic processes are needed to corroborate this hypothesis. 

 

 
Figure 23: Relative abundances of genes involved in the nitrogen cycle 

 

3.6.2. Metatranscriptomics 

Quality control of co-extracted RNA (see 2.4.1) on a Bioanalyzer revealed that the 

quality of the RNA was insufficient to continue with cDNA synthesis and sequencing. 

This was probably caused by temperature fluctuation induced RNA degradation during 

the prolonged storage of the samples when these were transported from Antarctica to 

Japan by boat. Therefore, we decided not to sequence the RNA, as sufficient quality of 

the resulting data could not be guaranteed. 

 

3.7. Microorganisms as early warning indicators 

This work package was aimed at assessing the potential to use microorganisms as early 

indicators for climate and environmental changes. We focused on the most complete 

datasets resulting from the CCAMBIO project, namely those (i) with the Illumina 

sequences of the 18S and 16S rRNA genes in the Arctic and Antarctic lakes, and (ii) the 
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dataset containing diatom species distributions in the Antarctic realm. Because modern 

day species distribution and diversity patterns are the result of both past processes (e.g. 

deglaciation history) as well as dispersal limitation (spatial processes) and present-day 

environmental properties of habitats, we used two approaches to assess the relative 

importance of each of these sets of variables. First, we modelled the effect of 

environmental, climatic and spatial/historical factors on OTU and species richness using 

multiple regressions. The response variable were the number of OTUs standardized to 

an equal number of sequences (n=5000) and the local diatom richness. The predictor 

variables included the climatic variables (see 2.2.3.1), the minimum age that lakes exist 

in the region, the distance of the region to the closest southern hemisphere landmass 

(excluding Antarctica), and the pH and specific conductance. Second, we applied 

redundancy analysis and variation partitioning (Borcard et al., 1992) to assess the 

importance of local environmental and climate variables versus spatial and hirstorical 

variables in explain patterns in microbial community structure in both datatsets (see also 

3.2 and 3.3). The multiple coefficients of determination were adjusted (R2
adj) (Peres-Neto 

et al., 2006) was used to correct for differences in the number of samples and the 

number of independent variables in both groups of predictors. For the Illumina dataset 

we only included pH and specific conductance and the climatic variables (see above). 

The limnological dataset for which we have diatom counts was more complete so we 

could also include data on the concentrations of Na+, K+, Mg2+, Ca2+, Cl-, NO3
-, NH4

+ 

and PO4
3+ in 213 lakes. The geographic data consisted of the eigenvectors 

corresponding to the positive eigenvalues resulting from a principal coordinate analysis 

of a matrix of geographic distances between the sampling sites (Borcard et al., 2002). 

Using Moran‖s I (Dray et al., 2006) calculated in R package PCNM v2.1, only the 

significant spatially autocorrelated PCNM vectors were selected. For the latter, latitude 

and longitude were modelled by distance  based Moran Eigenvector Maps (dbMEM) 

(Borcard et al., 2002; Dray et al., 2006; Legendre et al., 2012), which are created by 

orthogonal projections of the variation within a matrix of Euclidian distances between 

the sampling sites (Legendre et al., 2012). We retained only those dbMEM vectors that 

were strongly and positively spatially structured based on Moran‖s I (Dray et al., 2006) 

using the PCNM package in R (version 2.1; Legendre et al., 2013). The historical 

variable is the minimum age that lakes became ice-free, which is based on 14C, optically 

stimulated luminescence and/or 234U/230 dates of lacustrine sediments and algal 

limestones (Hendy, 2000; Hodgson et al., 2004b; Mackintosh et al., 2014; Verleyen et 

al., 2012). When age constraints from lacustrine sediments were not available, we 

assumed that lakes originated after the region became ice-free. Initial deglaciation was in 

these cases inferred from cosmogenic isotope dating of landforms, and/or 14C dating of 

(i) marine fossils in raised beaches on land (Bentley et al., 2014; Mackintosh et al., 

2014; Ocofaigh et al., 2014) or (ii) organic material in peat cores for the sub-Antarctic 
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islands (Hodgson et al., 2004b). All statistical analyses were performed in R with the 

packages vegan (Oksanen et al., 2015). 

 

3.7.1. Multiple regression analysis 

Multiple generalized linear regression (GLM) showed the significant interaction term 

between mean annual temperature and the hemisphere variable in the eukaryote GLM 

further suggested that mean annual temperature positively correlated to OTU-richness in 

the Southern Hemisphere, while this relation was considerably weaker in the Arctic. 

Similarly as in eukaryotes, bacterial OTU-richness in the Southern Hemisphere 

increased with mean annual temperature, while in the Northern Hemisphere, this 

relation was marginally negative, as indicated by the interaction term between annual 

average temperature and the hemisphere variable.  

Stepwise multiple linear regressions of the diatom dataset revealed that the trends in 

local species richness between the lake districts can be significantly explained by 

seasonal variation in temperature, geographic isolation (i.e. distance of each region to 

the nearest Southern Hemisphere continent), and pH (R²adj = 0.81; P < 0.001). The 

geographic factor uniquely explains 28.2% of variation in species richness between the 

lake districts and the limnological and climatic factors combined account for 25.3% of 

variation. This relation was confirmed by the analysis of the entire dataset (i.e., at the 

individual lake level), which revealed a significant correlation between richness and 

isolation (Spearman‖s rho = -0.60, P<0.001), variation in temperature (Spearman‖s rho 

=-0.47, P<0.001). 

 

3.7.2. Ordination and variation partitioning analysis 

The importance of the climatic factors in explaining microbial community structure 

became also evident in the variation partitioining analysis of the three datasets. In both 

the eukaryotes and bacteria (Illumina datasets), temperature related variables explained 

c. 3% of the variation in community structure, independent of the other explanatory 

variables (Figure 24). However, the spatial variables accounted for c. 6 and 5% of the 

variation on the eukaryotes and bacteria, respectively.  
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Figure.24: Biplots of redundancy analysis (RDA, plots A-F) and variation partitioning (G), 

showing the relationship between community composition and environmental, contemporary 

climate/energy and geographic data for eukaryotes (A-C, respectively) and bacteria (D-F, 

respectively). The total explained variation in the community data was partitioned in the 

proportions explained by environmental, energy, geographic variables and their shared 

proportions (plot G), showing geographic variables still explain the largest proportion of 

explained variation in both eukaryotes and bacteria, after correcting for spatial autocorrelation 

by measured environmental and climate/energy related variables. As expected by the large 

number of response variables (OTUs), a significant part of the observed variation remained 

unaccounted for. 

 

Redundancy analysis and variation partitioning of the diatom dataset, revealed that 

variation in local diatom community structure is significantly (P<0.05) explained by 

both (i) environmental, as well as (ii) historical and geographic factors (Figure 25). 

Combined, geographic and historical factors explain 44.4% of the total variation in local 
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diatom community structure. The significant local and climatic variables are the 

difference between mean summer and winter temperature, pH, specific conductance, 

and the concentrations of Cl-, Na+, Ca2+, PO4
2+

, K+, NO3
-, Mg2+ and NH4

+. These factors 

jointly explain 33.6% of the variation in diatom turnover between the lakes. As 

expected, the overlap between both sets of predictors is relatively large (24.8%), given 

that much of the variation in environmental conditions is spatially structured at such a 

large scale. Additionally, however, geographic and historical variables uniquely explain 

10.8% of the total variation in diatom data, while the unique contribution of local 

environmental and climatic variables amounts to only 8.8%. 

 

 
Figure 25: Redundancy analysis of 213 lakes showing those variables significantly explaining the variation 

in diatom community structure 

 

We conclude that although temperature and limnological variables significantly 

explained patterns in richness and community structure in the three datasets, geographic 

and historical factors explain a significant, unique and generally the largest amount of 

the variation in biotic data. This suggests that lacustrine microbial communities in 

Antarctica will likely respond to future climate change and variations in limnological 

properties of the lakes, and that their present-day distribution is an imprint of hirstorical 

events (e.g. glacial-interglacial cycles and differences in the deglaciation history between 

regions), as well as past and present dispersal limitation. The latter calls for stringent 
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measures to be taken to prevent the introduction of non-native microbial species and the 

homogenization of floras between regions of the AR. 

 

3.8. Publication of datasets in open access systems 

The metadata of the eukaryote and bacterial HTS amplicon sequencing datasets of LM 

and PAE have been documented on the microbial Antarctic Resource System (mARS) 

portal at mars.biodiversity.aq. MARS is an SCAR initiative developed at RBINS, and 

aims to make microbial data from Antarctica more visible for the wider scientific 

community, as such ensuring optimal access to the obtained data.  

By using internationally supported standardized terminology of the Genomics Standards 

Consortium (GSC), the data (metadata, nucleotide sequence data and environmental 

data) can later also be integrated with other projects. In addition, the metadata of these 

datasets have also been registered on the Global Biodiversity Information Facility (GBIF, 

available at 

http://ipt.biodiversity.aq/resource?r=microbial_bacteria_fungi_and_eukaryotes_in_arctic

_antarctic_and_subantarctic_lacustrine_biofilms). After publication of the manuscripts 

that are currently in preparation, the sequencing and environmental data will be 

formatted using the GSC terminology, and will be made public through the European 

Nucleotide Archive (ENA, part of the International Nucleotide Sequence Database 

Consortium, INSDC) in collaboration with RBINS. Analogously, after publication of the 

results of the high throughput shotgun sequencing experiment, the data will be 

documented on mARS and GBIF, and will be made publicly available through ENA. The 

Cyanobacteria 454 pyrosequencing dataset of CIP that was discussed in Pessi et al. 

(2016 and 2018) has also been documented on mARS and GBIF (available at 

http://ipt.biodiversity.aq/resource?r=lacustrine_cyanobacteria_antarctica), while the 

sequence data has been submitted to the NCBI‖s Short Read Archive (SRA, part of 

INSDC) under the Bioproject number PRJNA512453. These data will be made public on 

31-12-2019, after publication of a third manuscript. An assembly of the contigs of the 

genome of ULC007 was deposited in the genome database of NCBI. Finally, the diatom 

occurrence dataset of PAE has been formatted as a Darwin Core archive, and will be 

publicly available through the Biofresh metadata portal 

(http://data.freshwaterbiodiversity.eu) and GBIF after publication of the manuscript. 

 

http://ipt.biodiversity.aq/resource?r=microbial_bacteria_fungi_and_eukaryotes_in_arctic_antarctic_and_subantarctic_lacustrine_biofilms
http://ipt.biodiversity.aq/resource?r=microbial_bacteria_fungi_and_eukaryotes_in_arctic_antarctic_and_subantarctic_lacustrine_biofilms
http://ipt.biodiversity.aq/resource?r=lacustrine_cyanobacteria_antarctica
http://data.freshwaterbiodiversity.eu/
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4. POLICY SUPPORT 

 

In relation to the stated priorities of the ―Science for a Sustainable Development‖ (SSD) 

program, CCAMBIO addressed major research questions of high importance for the 

policy issues regarding the environmental protection and conservation of Antarctic 

biodiversity: 

 Extent and uniqueness of microbial diversity in the Antarctic Realm 

 Vulnerability of microbial diversity to climate change 

 A demonstration of the usefulness of HTS methodologies as a tool for biodiversity 

assessments, which can be used in future monitoring programs and projects aimed 

at assessing the response of microbial communities to climate and environmental 

changes  

 Recommendations for sustainable management of lacustrine and terrestrial 

Antarctic ecosystems and design of ASPA based on microbial diversity data 

 

 4.1. Environmental protection and conservation 

 

The rather high ratio of endemic and novel microbial phylotypes observed on the 

Antarctic continent shows that a significant fraction of the microbial diversity may have 

evolved in situ over larger temporal scales. Combined, the strong bioregionalization and 

macroecological patterns point to past and present dispersal limitations, evolution in 

isolation and persistence of Eukarya and Bacteria on the continent in glacial refugia 

during ice ages. This is largely in agreement with patterns for macroscopic organisms, 

and calls for stringent measures to avoid the introduction of alien microbial species into 

the Antarctic Biogeographic Realm, and to prevent the homogenisation of microbial 

communities between terrestrial ice-free regions. The loss of this Antarctic microbial 

diversity and its replacement by cosmopolitan invasive taxa would impair the scientific 

understanding of the functioning of these native communities and the study of their 

evolutionary history, specific adaptations and properties.  

 

The proposed conservation and management measures would include the following: 

1) Management plans for terrestrial ice-free regions and their lakes should include 

measures to prevent the introduction of non-native microbes into the AR, as exotic taxa 

might potentially affect local communities and competitively exclude endemic and 

sometimes rare species (Cowan et al., 2011). 

2) The unintentional transportation of microorganisms from one region to another 

should be avoided in order to protect regions against increased homogenization of their 

microbial floras. This evidently requires more stringent measures than those currently 
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taken by national scientific program managers and tourist operators. Moreover, the 

awareness of scientists of other disciplines working in Antarctica would also need to be 

raised, as they also might disperse microorganisms to and from different local and 

regional sources during field work. This is particularly important for areas of Antarctica 

that are still pristine. Considering the steady increase in tourism and scientific activities 

in the AR (Coetzee et al., 2017) as well as forecasted climate and environmental 

changes render this issue a high priority on the international conservation agenda. A 

special attention to this point could be integrated into the Environmental Impact 

Assessments that are mandatory to carry out activities in Antarctica following the 

Protocol on Environmental Protection of the Antarctic Treaty. In the sub-Antarctic 

Islands, the national authorities are responsible for the environmental management.  

3) Antarctic Specially Protected Areas (ASPA) should be designated in areas to 

protect unique microbial diversity, that is currently undervalued and rarely considered 

as being worth protection. Of the 72 ASPAs that existed in 2015, 19 and 7 were 

mentioning algae or cyanobacteria, respectively. These ASPA would also include 

―inviolate areas‖ that would be closed to human presence for long periods and serve as 

―reference areas‖ for future studies with methods that will be even more sensitive and 

sophisticated that those available today (Hughes et al., 2015).  

Though it is not possible to protect microbial habitats from the impact of climate change 

per se, and there will be climatic modifications resulting in larger deglaciated areas (Lee 

et al., 2017), we advocate to work with the SCAR and CEP to avoid that anthropogenic 

dissemination and homogenization would destroy the legacy of a unique and fascinating 

evolutionary history (Chown et al., 2015). A new SRP called ―Integrated Science to 

Support Antarctic and Southern Ocean Conservation (Ant-ICON)‖ is presently being 

prepared to be submitted to SCAR in 2020 and if accepted, would aim to address 

fundamental scientific questions related to the conservation and management of 

Antarctica, and aim to enable science-based international decision-making and 

development of new policies.  

 

 4.2. Preliminary steps to the use of HTS methods for the assessment of Polar 

Biodiversity 

 

Confronted with the technological progresses allowed by HTS but also the risks that this 

technology could generate artefactual data to an unknown extent and could result in an 

artificial inflation of the observed diversity, a workshop was organised with international 

experts on 21/11/2012 as described in 5.2. This allowed to take into account many 

advices and recommendations that were helpful for CCAMBIO, e.g. the use of artificial 

communities to validate the bioinformatic pipelines used for analysis.  
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For the cyanobacteria, a pilot study was performed to test the choice of primers and 

DNA extraction methods, but also to test and calibrate different bioinformatic pipelines 

by using two artificial communities (based on cyanobacterial strains). This showed that 

PCR- and sequencing-derived artefacts inflated richness up to five times, even after a 

very stringent quality control. The relative abundances were also skewed, as some taxa 

seem to be preferentially amplified over others, so that the method can only be 

considered as qualitative (Pessi et al., 2016). 

Also for microbial eukaryotes, the analysis of artificial communities provided new 

insights in errors associated with NGS data. These errors included large insertions and 

deletions in sequences that otherwise have a good quality score and easily get through 

the most stringent quality controls. We found that by adding an alignment step after 

OTU clustering this issue can be partially resolved. Although the insertions and 

deletions are not difficult to spot, we also found some sequences with a considerable 

amount of errors. We expect that they have arisen during PCR amplification. Although 

this problem merits further investigation, a possible solution is to introduce a cut-off 

value that removes all OTUs with a small number of sequences. We found that OTUs 

containing a large number of sequences robustly represented the species present in the 

artificial community. In some rare cases, however, spurious OTUs could reach a 

significant size, while true species would fall under any sensible cut-off level. This 

difficulty is of less importance when we aim to investigate large-scale patterns in 

community composition of the dominant species.  

 

 4.3. Activities and expertise of CCAMBIO partners for policy support 

 

At the international level, CCAMBIO partners translated their expertise and results 

obtained during CCAMBIO in working groups or international organizations that are 

working on the environmental protection of Antarctic biotopes, their long-term 

monitoring, and the conservation of the microbial diversity.  

The CCAMBIO partners have co-organized various sessions concerning the Antarctic 

biogeography of microorganisms and the conservation of microbial communities during 

SCAR meetings (e.g. Session S22 at the XXXIII SCAR Biennal Meetings and Open 

Science Conference 2014, “Scientific Advice for Policymakers and Evidence-based 

Conservation (AntEco)”, August 28 2014, Auckland, New-Zealand or Session S10 

'Understanding physiology (including 'omics' approaches), July 10-13 2018, Leuven, 

Belgium, as well as during meetings concerning Arctic and Antarctic microbial diversity 

(i.e. the Arctic summit meeting in Prague, 6-7/04/2017). 

Presently, E. Verleyen is member of the Board of the ANTOS Action group of SCAR 

ANTOS (Antarctic near-shore and terrestrial observing system) and was invited to a 

SCAR workshop ―Interactions between biological and climate processes in the Antarctic‖ 

http://www.scar.org/ssg/life-sciences/antos
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(16-18/09/2015, Barcelona Spain). He was also invited to a workshop initiated by the 

SCAR SRP “Antarctic Thresholds - Ecosystem Resilience and Adaptation”, which focused 

on challenges in identifying and applying cross-disciplinary approaches in the Antarctic 

and resulted in a publication (Gutt et al., 2018) where eight themes were highlighted. 

These ranged from scale problems, through risk maps, and organism/ecosystem 

responses to multiple environmental changes and evolutionary processes.    

A. Wilmotte is member of the Board of the SCAR SRP ―Ant-Eco‖ and member of the 

Belgian delegation to the Committee for Environmental Protection (CEP) of the Antarctic 

Treaty Meeting, and is also member of a group of CEP delegates who organized a 

workshop on education and dissemination in the frame of the ATCM38, just before the 

latter in Sofia in May 2015. She was co-organisor of mini-symposium MS 3. “Linking 

Antarctic science with environmental protection: Celebrating the 25th anniversary of the 

Madrid Protocol”, Kuala Lumpur, Malaysia, 23 August 2016, that resulted in a 

publication (Hughes et al., 2018). She was invited to the “Antarctic Environments Portal 

Climate Change Content Development Workshop” to advise on the priorities and 

content of subjects to put on the Antarctic Environments Portal (17-18/03/2015, 

Cambridge, UK) and the “Priority Threat Management for Antarctic Biodiversity 

Workshop” to identify the management strategies available to mitigate threats to 

Antarctic biodiversity and quantify the cost, feasibility and benefit of each action (8-

9/07/2017, Leuven , Belgium). She was invited by EU-POLARNET to be the lead author 

of the White Paper on Polar Biology touching upon the most pressing issues in the Polar 

Regions 

(https://www.eu-polarnet.eu/fileadmin/user_upload/www.eu-

polarnet.eu/Events/White_Paper_Broschuere-Korr-nach-Druck.pdf). 

  

https://www.eu-polarnet.eu/fileadmin/user_upload/www.eu-polarnet.eu/Events/White_Paper_Broschuere-Korr-nach-Druck.pdf
https://www.eu-polarnet.eu/fileadmin/user_upload/www.eu-polarnet.eu/Events/White_Paper_Broschuere-Korr-nach-Druck.pdf
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5. DISSEMINATION AND VALORISATION 

 

Results from CCAMBIO have been disseminated in a number of ways. To the scientific 

community, an output of 42 peer-reviewed papers, 40 oral conference contributions and 

15 posters at international meetings were presented. Students in the partners‖ 

laboratories also benefited from CCAMBIO knowledge and methodologies. To the 

general public, the project was presented via the website and a large number of 

outreach activities as detailed below.  

Valorization can also be judged from the success of CCAMBIO partners to obtain new 

projects based on the expertise gained during CCAMBIO. In 2013, the partners were 

selected by the INTERACT network to sample microbial biofilms in 80 lakes in 

Greenland (Sabbe et al., 2015) that were included in the CCAMBIO study by PAE. In 

2016, the CCAMBIO partners have obtained the BRAIN-BE project MICROBIAN to 

study the microbiome diversity and function in the Sør Rondane Mountains, East 

Antarctica. Since 2017, PAE is coordinating the Biodiversa project CLIMARCTIC - 

Climate change impacts on Arctic soil and lake microbiomes. In UL-CIP, after working 

for 1 year on CCAMBIO, Igor S. Pessi has obtained in 2013 a FRIA fellowship to 

characterize the colonization by cyanobacterial communities of the forefields of 

retreating glaciers in the Poles. UL-CIP also collaborated on the polyphasic taxonomic 

study of Oscillatoriales from Maritime Antarctica, with Prof. Kovacik of the Comenius 

University of Bratislava (Slovakia). The sequencing of genomes was also the occasion of 

a collaboration with Prof. Baurain and EJ Javaux (ULiège) and resulted in 3 publications 

and the PhD thesis of Luc Cornet. At LM, an FWO-funded research project (2012-2015) 

allowed samples from the PEA to be studied in great detail for the presence of 

photoautotrophic and photoheterotrophic bacteria. This included enrichment and 

purification cultures as well as amplicon sequencing (Illumina) of functional genes and 

lead to synergies with CCAMBIO regarding cultures and data analysis, additional peer-

reviewed papers and a PhD thesis by Guillaume Tahon. 

During the taxonomic revision of diatoms of Maritime Antarctica, B. Van de Vijver gave 

names to newly described species that were inspired by the CCAMBIO project: 

Nitzschia annewillemsiana, N. kleinteichiana, N. velazqueziana, N. willmotteana, N. 

stelmachpessiana, N. vancauwenberghiana; N. vandeputteana (Hamsher et al. 2015) 

and Mayamaea sweetloveana, M. tytgatiana (Ziderova et al. 2016). 

 

5.1. Website 

 

A project website was designed to increase the visibility of the project and is available at 

http://www.ccambio.ulg.ac.be. It includes a description of the project, news, activities, 

publications, links and contact information. 

http://www.ccambio.ulg.ac.be/
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5.2. Workshop on the use of HTS methods for Polar Biodiversity 

 

The “Next Generation Sequencing at the Poles” workshop was organized by the 

CCAMBIO project partners at the University of Liège (Liège, Belgium) between 21 and 

23 November 2012. The first day was dedicated to lectures, poster presentations and 

discussions centered around proposing guidelines for inter-laboratory comparisons and 

was attended by 53 participants. The book of abstracts can be downloaded from the 

project website. 

The speakers were David Pearce (British Antarctic Survey, Cambridge, UK), Antonio 

Quesada, (Autonomous University Madrid, Spain), Alison Murray (Desert Research 

Institute, NV, USA), Jean-François Ghiglione (Laboratoire d'Océanographie 

Microbienne, France), George Kowalchuk* (Netherlands Institute of Ecology, 

Netherlands), Thomas Pommier (Université de Lyon 1, France), Craig Herbold 

(University of Waikato, New Zealand), Étienne Yergeau* (National Research Council of 

Canada, Montréal). The speakers indicated with * gave a talk by videoconference, 

decreasing the carbon footprint of the workshop. 

During the second and third days, a training course on bioinformatic analyses was given 

by Alison Murray, Thomas Pommier, Craig Herbold and Bjorn Tytgat (LM) and was 

followed by 24 young researchers. 

 

5.3. Biological resources 

 

Bacterial isolates obtained at LM have been stored in the research collection of the 

laboratory. Their characterization is still ongoing. Once their identity is fully established, 

a subset of representative strains is selected by the BCCM/LMG public collection curator 

for deposit in the public collection. This has already been done for a strain, LMG 

29911T, which we named Abitibacterium utsteinensis that represents the novel phylum 

Abditibacteriota (Tahon et al. 2018). 

Nineteen cyanobacterial strains isolated by CCAMBIO members (Dagmar Obbels for 

PAE, Guillaume Tahon for LMG and Y. Lara for ULg) were deposited in the public 

collection BCCM/ULC. 

 

 5.4. Collection of samples 

 

The samples collected and combined within the CCAMBIO project resulted so far in 

two new initiatives.  

First, 16 samples were selected from Arctic, Antarctic and sub-Antarctic lakes for a 

metagenomics analysis on a Illumina HiSeq platform. The samples were processed as 

described in 3.4.1. This resulted in nearly 500 million paired end reads. Bacteria made 
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up the majority of the reads. Preliminary analysis showed that Archaea were present in 

at least 4 samples. Eukaryotic reads are mainly metazoan from the southern Greenland 

sample, while most other eukaryotic reads are assigned to the Bacillariophyta. The 

sample from the highly saline Forlidas Pond (Transantarctic Mountains) showed a very 

low diversity and different functional genes from the other samples (DNRA being the 

most important nitrogen-related process) and a high number of genes related to stress 

response. Future analysis of this unique dataset will especially focus on carbon and 

nitrogen metabolism related processes, which we expect to differ significantly between 

(and within) the different biogeographical regions. 

In a second study, we selected 87 benthic microbial mats of Arctic and (sub)Antarctic 

lakes from the CCAMBIO dataset for studying the biodiversity of aquatic fungi using 

high-throughput amplicon sequencing (Illumina, MiSeq) of the 5.8S-ITS2 segment of the 

nuclear ribosomal ITS region. This dataset was combined with the 16S and 18S rRNA 

datasets obtained within CCAMBIO for bacteria and microbial eukaryotes, respectively 

(see 3.3). This analysis revealed that these benthic mats harbour a diverse pool of fungi, 

dominated by Cryptomycota and Chytridiomycota, as well as many yeast-like forms of 

Ascomycota and Basidiomycota. 

 

5.5. Outreach and education 

 

5.5.1. Articles in newspapers, media activities 

 Website of the University of Liège: 

https://www.uliege.be/cms/c_3065991/fr/annick-wilmotte-deleguee-belge-au-

comite-pour-la-protection-de-l-environnement-lors-de-la-reunion-consultative-du-

traite-sur-l-antarctique 

 2013/05/01-2013/05/12 Interviews of Dr A. Wilmotte on WebTV sur le Traité 

Antarctique (http://www.ulg.ac.be/cms/c_3155716/en/est-on-en-trainde-detruire-l-

antarctique) and during the public TV broadcast ―Le jardin extraordinaire‖ 

(https://www.rtbf.be/tv/emission/detail_le-jardin-

extraordinaire/actualites/article_la-protection-de-l-antarctique-la-preservation-de-

la-biodiversite-des-eaux-douces?id=7988975&emissionId=30) 

 Interview of E. Verleyen for the kids krant about scientific expeditions. 

21/02/2018. 

 Durieu B.: Regular posts on the website of APECS Belgium (Association of Polar 

Early Career Scientists: popular Science, data tutorial, etc. in 2017 

(https://apecsbelgium.wordpress.com/category/data-tutorials/) 

 

 

https://www.uliege.be/cms/c_3065991/fr/annick-wilmotte-deleguee-belge-au-comite-pour-la-protection-de-l-environnement-lors-de-la-reunion-consultative-du-traite-sur-l-antarctique
https://www.uliege.be/cms/c_3065991/fr/annick-wilmotte-deleguee-belge-au-comite-pour-la-protection-de-l-environnement-lors-de-la-reunion-consultative-du-traite-sur-l-antarctique
https://www.uliege.be/cms/c_3065991/fr/annick-wilmotte-deleguee-belge-au-comite-pour-la-protection-de-l-environnement-lors-de-la-reunion-consultative-du-traite-sur-l-antarctique
http://www.ulg.ac.be/cms/c_3155716/en/est-on-en-trainde-detruire-l-antarctique
http://www.ulg.ac.be/cms/c_3155716/en/est-on-en-trainde-detruire-l-antarctique
https://www.rtbf.be/tv/emission/detail_le-jardin-extraordinaire/actualites/article_la-protection-de-l-antarctique-la-preservation-de-la-biodiversite-des-eaux-douces?id=7988975&emissionId=30
https://www.rtbf.be/tv/emission/detail_le-jardin-extraordinaire/actualites/article_la-protection-de-l-antarctique-la-preservation-de-la-biodiversite-des-eaux-douces?id=7988975&emissionId=30
https://www.rtbf.be/tv/emission/detail_le-jardin-extraordinaire/actualites/article_la-protection-de-l-antarctique-la-preservation-de-la-biodiversite-des-eaux-douces?id=7988975&emissionId=30
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5.5.2. Valorisation for a wider audience 

 Verleyen E., D. Obbels, A. De Wever, C. Souffreau, P. Vanormelingen, K. Sabbe, 

W. Vyverman, K. Peeters, B. Tytgat, A. Willems, M.-J. Mano, P. De Carvalho 

Maalouf, R. Fernandez-Carazo, Z. Namsaraev, A. Wilmotte, D. Ertz. 2013. 'Out 

of sight, out of mind, Antarctic microbial diversity as an additional criterion for 

conservation purposes'// Uit het oog uit het hart? Antarctische microbiële 

diversiteit als criterium voor naruurbehoud. // Loin des yeux, loin du coeur? Et si 

on prenait en compte la diversité microbienne dans les stratégies de conservation 

en Antarctique? Science Connection (BelSPO) 41:44-47. Special edition for the 

organisation of the 36th Antarctic Treaty Consultative Meeting (ATCM2013) with 

translation in English, dutch and french, May 2013, Brussels, Belgium. 

(www.belspo.be/belspo/organisation/Publ/pub_ostc/sciencecon/41sci_en.pdf) 

 LM, PAE and CIP contributed to the exhibition “Inside the Station Exhibition”of 

the International Polar Foundation, by providing bacterial cultures for 

fotosessions, photographs and information material for the Biology part. 

December 2012 to May 2013, Tour & Taxis, Brussels. 

 Lecture given by Dr A. Wilmotte during the Science Fair of the Association for 

Polar Early Career Scientists (APECS) at the Royal Academy: "The forgotten 

heroes of Antarctica (microbial life)", 26 May 2013, Brussels, Belgium. 

 A. Wimotte organised the course Collège Belgique at the Royal Academy 'Le 

traité sur l'Antarctique: une gouvernance originale pour un continent 

exceptionnel', Le système du traité sur l‖Antarctique : un mécanisme de 

coopération unique. Le Comité pour la protection de l'environnement : un outil 

mis en place par le protocole de Madrid pour protéger l'Antarctique. 28 May 

2013, Brussels, Belgium. 

 A. Wilmotte gave an outreach lecture "Les héros oubliés de l'Antarctique » on the 

subject of microbial diversity» for the association ―Connaissance et vie‖ in Mons 

(22 January 2015) and Courtrai (1 October 2015). 

 A. Wilmotte gave two outreach lectures during ―Cours Espace Universitaire‖ in 

Liège ≪ Le traite sur l‖Antarctique, une gouvernance originale pour un continent 

exceptionnel ≫, 18 February 2016, and ≪ S‖adapter pour survivre : la 

biodiversité terrestre antarctique≫, 3 March 2016, Liège, Belgium. 

 B. Durieu, K. Beets & A. Wilmotte, ―Hands on workshop on the pigments of 

Antarctic cyanobacteria‖ for a secondary school Saint-Roch de Theux,Belgique, 

31 March 2017, University of Liège, Belgium. 

 E. Verleyen: Presentation “Antarctische kustmeren: biodiversiteitshotspots voor 

micro-organismen”. Rotary club Dendermonde, 2 May 2017, Dendermonde, 

Belgium. 
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 E. Verleyen: Presentation “Antarctische kustmeren: microbiële 

biodiversiteitshotspots en archieven voor de reconstructie van vroegere 

veranderingen in de ijskapdynamiek”. Vrienden van de Wetenschap‖ (Faculteit 

Wetenschappen), 4 May 2017, Ghent, Belgium.  

 E. Verleyen: Outreach presentation for the Ny Ålesund science forum, 19 July 

2017, Svalbard. 

 A. Wilmotte: Presentation of research projects in Antarctica at the « Closing event 

» of an exhibition of pictures of Antarctica “Sentinels of the extreme”, Atrium 

Covent Garden, 7 September 2017, Brussels, Belgium. 

 B. Durieu & V. Savaglia: organization of a projection of the movie “Antarctica, 

sur les traces de l'Empereur”, plus the interview of the film-maker and debate at 

the University of Liège, 27 September 2017. 

(https://www.facebook.com/events/480535182315165/), Liège, Belgium. 

 E. Verleyen: Presentation for ―Iedereen UGent‖ - UGent 200 jaar: Wat 

Antarctische meersedimenten ons leren over vroegere klimaatveranderingen (en 

voorspellingen nauwkeuriger maken). 08 October 2017, Ghent, Belgium. 

 A. Wilmotte & V. Savaglia gave an outreach lecture ≪Qui vit dans les conditions 

extrêmes de l‖Antarctique? ≫ Université du troisième âge, 14 November 2017 

Liége, Belgium.  

 B. Durieu & V. Savaglia : for the “Antarctica day”, creation and publication of the 

“Maps of Belgian polar research and expedition in 2017/2018”: 

https://apecsbelgium.wordpress.com/maps-of-belgian-polar-research/belgian-

polar-expeditions/, 26 November 2017. 

 Durieu B & V. Savaglia: organization of an APECS-BELSPO contest of Antarctic 

stories for 5th and 6th primary school and 1st secondary school, 2017-2018: 

(http://rejouisciences.uliege.be/activites/concours/concours-antarctique/). Visit of 

the primary school of Wegnez Centre (Pepinster) who participated to the Story 

book contest : https://apecsbelgium.wordpress.com/2018/07/21/back-to-school/, 

21 June 2018, Pepinster, Belgium. 

 B. Durieu & V. Savaglia: for “Antarctica Day”, visits of 3 schools (British 

International School of Bruxelles, primary school Sainte-Louise of Schaerbeek, 

Collège Saint-Pierre of Uccle) to propose different activities about Antarctic 

research (presentations, experiments, games, etc.), 23, 28, 30 November 2018. 

https://apecsbelgium.wordpress.com/2018/12/01/school-visits-for-antarctica-day/ 

 B. Durieu & V. Savaglia: presentation of CCAMBIO/MICROBIAN expeditions 

and laboratory analyses to the public during the “Printemps des Sciences 2018” 

at University of Liège : http://rejouisciences.uliege.be/2018/ll37/, 24-25 March 

2018, Liège, Belgium. 

https://www.facebook.com/events/480535182315165/
https://apecsbelgium.wordpress.com/maps-of-belgian-polar-research/belgian-polar-expeditions/
https://apecsbelgium.wordpress.com/maps-of-belgian-polar-research/belgian-polar-expeditions/
http://rejouisciences.uliege.be/activites/concours/concours-antarctique/
https://apecsbelgium.wordpress.com/2018/07/21/back-to-school/
https://apecsbelgium.wordpress.com/2018/12/01/school-visits-for-antarctica-day/
http://rejouisciences.uliege.be/2018/ll37/
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5.5.3. Training and education 

 A. Willems includes the research outcomes in classes on Antarctic prokaryotic 

diversity in the course of Molecular microbial ecology to students of the MSc 

Biotechnology program at Ghent University. 

 W. Vyverman, E. Verleyen and B. Tytgat use the CCAMBIO data as case studies 

in several courses within the bachelor and master programs in Biology at Ghent 

University. E. Verleyen also gives guest lectures at the University of Lille (France) 

and the Free University of Brussels in which the CCAMBIO data are integrated. 

 The LM team hosted two master students (4th year Biochemistry and 

Biotechnology) who received 4 weeks of laboratory training. One bachelor thesis 

(2013-2014) and three master theses (Sam Lambrechts, MSc Biology 2012-2013 

and Hanneloor Heyndrickx and Karen Van Raemdonck, both MSc Biology and 

Biotechnology 2013-2014) were done in the framework of CCAMBIO. 

 The PAE laboratory trained three bachelor students (3th year biology) for one 

month within the CCAMBIO framework (bioinformatics and statistical analysis 

techniques of NGS amplicon data, design of group-specific primers with high 

taxonomic resolution, and) HPLC-pigment analysis techniquesà. 

 At LM and PAE, Bjorn Tytgat prepared and successfully defended a PhD thesis in 

the framework of CCAMBIO (28/04/2016, title: Distribution and characterization 

of bacterial communities in diverse Antarctic ecosystems by high-throughput 

sequencing). In the PAE lab, a PhD thesis in the framework of CCAMBIO was 

also written and defended by Maxime Sweetlove (30/08/2018, title: 

Biogeography, macro-ecology and biodiversity of lacustrine microbiomes). 

 In CIP, a PhD thesis was written and defended (05/09/2017, title: The 

cyanobacterial biota of Polar Regions) by Igor S. Pessi that included two chapters 

on the project CCAMBIO. 

 

5.5.4. Final workshop 

No final workshop was organized as three oral talks on CCAMBIO data were given 

during the SCAR Biology Symposium in Leuven in July 2017. 
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4. Tytgat Bjorn, Verleyen Elie, Sweetlove Maxime, D‖hondt Sofie, Wilmotte Annick, 

Willems Anne and Vyverman Wim (in prep.) Interhemispheric biogeographical 

patterns in the functional potential of polar lake microbiomes. 

5. Elie Verleyen, Bart Van de Vijver, Bjorn Tytgat, Dominic A. Hodgson, Eveline 

Pinseel, Kate Kopalova, Steven L. Chown, Eric Van Ranst, ANTDIAT consortium, 

Koen Sabbe, Wim Vyverman. (in prep.) bioregionalisation and biogeographic 

provincialism in Antarctic freshwater diatom communities 

6. Durieu B, Lara Y, Pessi I S, Lambion A, Verleyen E, Wilmotte A (In prep) A multi-

scale biogeographical analysis of Antarctic mat-forming cyanobacteria. 

7. Lara Y, Durieu B, Rippka, R, Javaux EJ, Wilmotte A (In prep.) The black-

pigmented cyanobacterium Phormidesmis priestleyi ULC007: a bacterial survival 

toolkit from Antarctica. 

 

6.3. Articles in non-refereed journals 

 

1. Deng, L., Sweetlove, M., Blank, S., Obbels, D., Verleyen, E., Vyverman, W. & 

Kurmayer R. (2017). Monitoring of Toxigenic Cyanobacteria Using Next 

Generation Sequencing Techniques. In R., Kurmayer, K., Sivonen, A., Wilmotte, 

& N., Salmaso (eds.) Molecular Tools for the Detection and Quantification of 

Toxigenic Cyanobacteria, pp. 277-282. Hoboken, NJ: John Wiley and sons LTD. 

2. Sweetlove M, Obbels D, Verleyen E, Pessi I.S., Wilmotte A & Vyveman W 

(2017). Bioinformatic processing of amplicon sequencing datasets. In R., 

Kurmayer, K., Sivonen, A., Wilmotte, & N., Salmaso (eds.) Molecular Tools for 

the Detection and Quantification of Toxigenic Cyanobacteria, pp. 283-287. 

Hoboken, NJ: John Wiley and sons LTD. 

 

6.4. Oral presentations at scientific meetings 

 

1. Mano, M.-J., De Carvalho, P., Verleyen, E., Obbels, D., De Wever, A., 

Namsaraev, Z., Willems, A., Vyverman, W., & Wilmotte, A. Out of sight, out 

of mind? Diversity of microscopic organisms as an overlooked criterion for 

conservation purposes. Paper presented at XXXII SCAR OPEN SCIENCE 
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CONFERENCE "Antarctic Science and Policy Advice in a Changing World", 

July 2012, Portland, OR, USA. 

2. Wilmotte A. Antarctic cyanobacterial diversity: how important are the 

geographical and ecological factors? Paper presented at the XXI Congresso 

Latinoamericano de Microbiology – ALAM 2012, 31 October 2012, Santos, 

Brazil.(Invited Speaker) 

3. Verleyen E, Van de Vijver B, Hodgson DA, Sabbe K, Souffreau C, Nedbalová L, 

Tavernier I, Sterken M, Jones VJ, Vanormelingen P, Antoniades D, Van 

Nieuwenhuyze W, Satoshi I, Kudoh S & Vyverman W. Poles apart: 

Interhemispheric contrasts in polar diatom diversity driven by differences in 

tectonics and glacial history. 30th Polar Biology Symposium, 24 November-01 

December 2012, Tokyo, Japan. 

4. Verleyen E, Van de Vijver B, Souffreau C, Sabbe K, Hodgson DA, Nedbalová L, 

Antoniades D, Vanormelingen P, Convey P & Vyverman W. Diatom 

distributions in space and time - a case study from the polar regions. 1st Polar 

Ecology Symposium, 1-3 October 2012. České Budějovice, Czech Republic. 

5. Vyverman W, Verleyen E, Obbels D, Tytygat B, Wilmotte A, Willems A, Van 

Nieuwenhuyze W, Tavernier I, Hodgson DA & Sabbe K. The imprint of glacial 

history on the biogeography of Antarctic lake-dwelling micro-organisms. 5th 

International Conference on Polar and Alpine Microbiology, 8-12 September 

2012, Big Sky, Montana, USA. 

6. Van de Vijver B, Wetzel CA & Ector L. Revision of the genus Planothidium: the 

importance of type material in a better identiftication of some widespread taxa. 

NORBAF meeting, 18-22 November 2013, Erken, Sweden. 

7. Kopalová K, Nedbalová L, Verleyen E & Van de Vijver B. James Ross Island: 

diatom gate to two biogeographical zones. 7th Central European Diatom 

Meeting, 16-20 September 2013, Thonon-les-Bains, France. 

8. Van de Vijver B, Kopalová K, Zidarova R & Verleyen E. Freshwater diatoms 

from the Maritime Antarctic Region: biodiversity hotspot or taxonomical 

artefact? 7th Central European Diatom Meeting, 16-20 September 2013, 

Thonon-les-Bains, France. 

9. Van de Vijver B, Kopalová K, Zidarova R, Wetzel CE & Ector L. Le genre 

Planothidium dans la région antarctique. 32ème Colloque de l'Association des 

Diatomistes de Langue Française, 16-20 September 2013, Thonon-les-Bains, 

France. 

10. Kopalová K, Nedbalová L & Van de Vijver B. James Ross Island: diatom gate to 

two biogeographical zones. 22nd North American Diatom Symposium, 13-17 

August 2013, Bar Harbor, Maine, USA. 
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11. Van de Vijver B, Kopalová K & Zidarova R. Freshwater diatoms from the 

Maritime Antarctic Region: biodiversity hotspot or taxonomical artefact? 22nd 

North American Diatom Symposium, 13-17 August 2013, Bar Harbor, Maine, 

USA. 

12. Hughes K., E. Verleyen, W. Vyverman, D. Obbels, A. Willems, I. Stelmach 

Pessi, H. D. Laughinghouse, A. Wilmotte. Human impacts on Antarctic 

ecosystems : do not forget the microorganisms! XIth SCAR Biology Symposium, 

15-19 July 2013, Barcelona, Spain.  

13. Vyverman W., E. Verleyen, D. Obbels, B. Tytgat, A. Wilmotte, A. Willems, W. 

Van Nieuwenhuyze, I. Tavernier, D.A. Hodgson, K. Sabbe. The imprint of 

glacial history on the biogeography of Antarctic lake-dwelling micro-organisms. 

5th International Conference on Polar and Alpine Microbiology, 8-13 

September 2013, Big Sky, Montana, USA. 

14. Van de Vijver B, Kopalová K, Zidarova R & Verleyen E. Freshwater diatoms 

from the Maritime Antarctic Region: biodiversity hotspot or taxonomical 

artefact? 23rd International Diatom Symposium, 6-11 September 2014, 

Nanjing, China.  

15. Verleyen E, Tavernier I, Van Nieuwenhuyze W, Hodgson DA, Souffreau C, 

Sabbe K, Van de Vijver B & Vyverman W. Biogeografisch provincialisme in 

Oost-Antarctische diatomeeëngemeenschappen: lokale extinctie versus 

selectieve overleving in glaciale refugia. NVKD studiedagen, 15-17 May 2014, 

Leiden, Netherlands. 

16. Van de Vijver B., Kopalová K., Zidarova R. & Verleyen E. Freshwater diatoms 

from the Maritime Antarctic Region: biodiversity hotspot or taxonomical 

artefact? 23rd International Diatom Symposium, 06-11 September 2014, 

Nanjing, China. 

17. Stelmach Pessi, I., de Carvalho Maalouf, P., Laughinghouse IV, H. D., & 

Wilmotte, A. Unveiling Antarctic cyanobacterial diversity by 454 

pyrosequencing. Paper presented at DFG Workshop on Antarctic Research, 

May 2015, Göttingen, Germany. 

18. Wilmotte A., I. Stelmach-Pessi, M. Sweetlove, D. Obbels, P. Vanormelingen, B. 

Tytgat, A. Willems, E. Verleyen, W. Vyverman, B. Van De Vijver. Molecular 

diversity of microorganisms in Antarctic lacustrine microbial mats. Aquatic 

Sciences Meeting: Global And Regional Perspectives — North Meets South. 

22-27 February 2015, Granada, Spain.  

19. Tahon G., B. Tytgat, A. Willems. Diversity of cbbL, nifH and pufLM genes in 

soils around the Princess Elisabeth Station, Sør Rondane Mountains, Antarctica. 

6th International Conference on Polar and Alpine Microbiology, České 
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Budějovice, Czech Republic, 6-10 September 2015. Oral presentation by G. 

Tahon. Second prize for a lecture by a young researcher.  

20. Vyverman W, Verleyen E, Pinseel E, Kopalová K, Antoniades D, Sterken M, 

Nedbalová L, Jones VJ, Tavernier I, Tytgat B, Souffreau C, Imura S, Kudoh S, 

Convey P, Hodgson DA, Sabbe K, Van de Vijver B. Post-Miocene divergence 

of polar diatom biomes. 6th International Conference on Polar and Alpine 

Microbiology, 6-10 September 2015, České Budějovice, Czech Republic 

(invited keynote lecture). 

21. Sweetlove M., E. Verleyen, B. Tytgat, D. Obbels, S. D‖hondt, A. Willems, W. 

Vyverman. Biogeographic zoning of aquatic microeukaryotes in the Antarctic 

realm. 6th International Conference on Polar and Alpine Microbiology, 6-10 

September 2015, České Budějovice, Czech Republic. 

22. Tytgat B., D. Obbels, E. Verleyen, M. Sweetlove, Z. Namsaraev, M.J. Mano, R. 

Fernandez-Carazo, K. Peeters, S. D‖hondt, P. Clercx, A. De Wever, D. Ertz, J. 

Elster, E. Van Ranst, S. Roberts, K. Sabbe, A. Wilmotte, W. Vyverman, A. 

Willems. Bacterial and eukaryotic biodiversity patterns in the Sør Rondane 

Mountains, Dronning Maud Land, East Antarctica. BNCAR symposium. 

Unlocking a continent: scientific research at the Belgian Princess Elisabeth 

Station, Antarctica 2008-2016. 29 April 2016, Brussels, Belgium.  

23. Tahon G., B. Tytgat, K. Peeters, A. Willems. Shining a light on exposed high-

altitude Antarctic ecosystems provides a clearer view on the diversity of 

phototrophic bacteria. BNCAR symposium. Unlocking a continent: scientific 

research at the Belgian Princess Elisabeth Station, Antarctica 2008-2016. 29 

April 2016, Brussels, Belgium. 

24. Durieu B., Y. Lara, D. Obbels, E. Pinseel, I. Stelmach Pessi, M. Sweetlove, B. 

Tytgat, E. Verleyen, W. Vyverman, A. Van De Putte, B. Van De Vijver, A. 

Willems, A. Wilmotte. Diversity and distribution of microorganisms in 

microbial mats of Antarctic lakes. XXXIV Scientific Committee on Antarctic 

Research Open Science Conference , 20-30 August 2016, Kuala Lumpur, 

Malaysia. 

25. Wilmotte A., A. Willems, E. Verleyen, W. Vyverman, D. Velazquez, A. 

Quesada, D. H. Laughinghouse, J. Kleinteich, D. A Pearce, J. Elster, K. Hughes. 

Inviolate areas to protect reference sites for future microbiology research in 

Antarctica. XXXIV Scientific Committee on Antarctic Research Open Science 

Conference, 20-30 August 2016, Kuala Lumpur, Malaysia. 

26. Stelmach Pessi, I., Lara, Y., Durieu, B., Wilmotte, A. Cyanobacterial Diversity 

in Antarctic Aquatic Microbial Mats, Third annual Belgian Interdisciplinary 

Biofilm Research meeting, September 2016, Liège, Belgium. 
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27. Van de Vijver B., Kopalová K. & Zidarova R. The Psammothidium germainii-

complex. 10th Central European Diatom Meeting, 20-24 April 2016, 

Boedapest, Hungary.  

28. Van de Vijver B., Kociolek J.P., Kopalová K., Hamsher S.E., Kohler, T.J., 

Convey P. & McKnight D.M. Freshwater diatom biogeography and the genus 

Luticola: An extreme case of endemism in Antarctica. 24th International 

Diatom Symposium, 20-26 August 2016, Quebec, Canada. 

29. Verleyen E. The origin of the polar lacustrine diatom biome: evidence from 

paleolimnology, macroecology and high-throughput sequencing. The 

Micropalaeontological Society Annual Conference, 17-18 November 2016, 

Lille,France. Invited keynote presentation 

30. Verleyen E., Vyverman W., Van de Vijver B., Sweetlove M., Pinseel E., Tytgat B., 

Sabbe K, and the CCAMBIO consortium. The polar lacustrine microbiome: 

centres of endemism under changing climates. Flanders Annual Meeting on 

Ecology, 19 December 2016, Gent, Belgium.  

31. Verleyen E. The origin of the polar lacustrine diatom biome: evidence from 

macroecology and paleolimnology. 11th Central European Diatom meeting, 22-

25 March 2017, Prague, Czech Republic. Invited keynote 

32. Wilmotte, A. Antarctic cyanobacteria: from diversity to genomics. Paper 

presented at ―Marine microorganisms and their contribution to global 

biogeochemical cycles‖ Symposium in honour of Professor Lucas Stal, 30 June 

2017, Amsterdam, Netherlands. http://hdl.handle.net/2268/212648 

33. Sweetlove M., B. Tytgat, E. Verleyen, K. Van den Berge, S. D‖hondt, D. 

Obbels, E. Pinseel, D. A. Hodgson, K. Sabbe, A. Wilmotte, L. Clement, A. 

Willems and W. Vyverman.Biogeography and macroevolution in the Arctic 

and Antarctic lacustrine microbiomes. XIIth SCAR Biology Symposium, 10-14 

July 2017, Leuven, Belgium. 

34. Durieu B, Pessi IS, Lara Y, de Carvalho Maalouf P, Lambion A & Wilmotte A. 

Biogeographic patterns and genomic adaptation of benthic cyanobacteria in 

Antarctic lakes. XIIth SCAR Biology Symposium, 10-14 July 2017, Leuven, 

Belgium.  

35. Verleyen E., Pinseel E., Van de Vijver B., Hodgson D.A., Harper M., Wolfe A.P., 

Lewis A.R., Dickinson W., Ashworth A.C., the ANTDIAT consortium, Sabbe K., 

Vyverman W. The imprint of Neogene and Quaternary climate filtering on 

contemporary biogeographic patterns in the Antarctic lacustrine diatom biome. 

SCAR PAIS symposium, 10-15 September 2017, Trieste, Italy. 

36. Tytgat, B., Obbels, D., Sweetlove, M., Namsaraev, Z., Mano, M-J., Fernandez-

Carazo, R., Peeters, K., D‖hondt, S., Clercx, P., De Wever, A., Ertz, D., Elster, 

J., Van Ranst, E., Roberts, S., Sabbe, K., Wilmotte, A., Willems, A., Vyverman, 
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W. and Verleyen, E. Bacterial and eukaryotic biodiversity patterns in the Sør 

Rondane Mountains. Ecology Across Borders, 11-15 December 2017, Ghent, 

Belgium.  

37. Verleyen E., Van de Vijver B., Pinseel E., Hodgson D.A., Tytgat B., POLDIAT 

consortium, Sabbe K., Vyverman W. The origin of the polar lacustrine diatom 

biome: evidence from macroecology and paleolimnology. German Polar 

Conference, 25-29 March 2018, Rostock, Germany.  

38. Lara, Y., Durieu, B., Pessi, I., Cornet, L., Baurain, D., Javaux, E., & Wilmotte, A. 

The survival toolkit of the Antarctic cyanobacterium Phormidesmis priestleyi 

ULC007. COST Life Origin Final Workshop, 20 March 2018, Bertinoro, Italie. 

39. Vincent W and Wilmotte A. Conservation issues in the High Arctic and Pole-to-

Pole comparisons. Polar 2018, Where the Poles come together, Open Science 

Conference, 21 June 2018, Davos, Switzerland. 

40. Durieu, B., Lara, Y., Stelmach Pessi, I., Lambion, A., Verleyen, E., Baurain, D., & 

Wilmotte, A. Biogeography of Cyanobacteria in Antarctic Mats and Implication 

for Conservation. Polar 2018, Where the Poles come together, Open Science 

Conference, 19 June 2018, Davos, Switzerland. 

 

6.5. Poster presentations at scientific meetings 

 

1. Obbels D., P. De Carvalho Maalouf, A. Lambion, A. De Wever, K. Peeters, A. 

Willems, E. Verleyen, W. Vyverman, A. Wilmotte. Antarctic Microbial 

BIOdiversity : the importance of geographical versus ecological factors. SCAR 

5th Open Science Conference, , 16-19 July 2012, Portland, Oregon, USA.  

2. Convey P., B. Danis, H. D. Laughinghouse, D. Obbels, D. Pearce, I. Stelmach 

Pessi, B. Tytgat, B. Van de Vijver, E. Verleyen, W. Vyverman, A. Willems, A. 

Wilmotte. The CCAMBIO project: responses of the aquatic microbial mats to 

Climate Change. SCAR-EBA Workshop on “Next-Generation Sequencing at the 

Poles”. 21-23 November 2012, Liège, Belgium. 

3. Obbels D., E. Verleyen, B. Tytgat, J. Elster, O. Strunecky, A. Wilmotte, A. 

Willems, K. Sabbe, W. Vyverman. The diversity and tolerance to osmotic stress 

of East Antarctic filamentous Cyanobacteria. XIth SCAR Biology Symposium, 

15-19 July 2013, Barcelona, Spain. 

4. Kopalová K., D. Obbels, I. Stelmach Pessi, M. Sweetlove, B. Tytgat, B. Van de 

Vijver, P. Vanormelingen, E. Verleyen, W. Vyverman, A. Willems, A. 

Wilmotte. CCAMBIO: Climate Change and Antarctic Microbial Biodiversity. 

SCAR-Open Science Conference, 25-28 August 2014, Auckland, New Zealand. 

5. Stelmach Pessi, I., De Carvalho, P., Laughinghouse, H. D., & Wilmotte, A. Use 

of 454 pyrosequencing protocol for the assessment of cyanobacterial diversity. 
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Poster session presented at Empowering Biodiversity Research, May 2015, 

Brussels, Belgium. 

6. Lara, Y., Verlaine, O., Kleinteich, J., Stelmach Pessi, I., Rippka, R., Renard, M., 

Cornet, L., Baurain, D., & Wilmotte, A. Genome sequencing of an endemic 

filamentous Antarctic cyanobacterium. Poster session presented at 15th 

International Symposium on Phototrophic Prokaryotes, 03 August 2015, 

Tübingen, Allemagne. 

7. Tytgat B., E. Verleyen, S. D‖hondt, P. Clercx, K. Peeters, E. Van Ranst, W. 

Vyverman, A. Willems. Exploring diversity patterns in the Sør Rondane 

Mountains (East-Antarctica) using Next Generation Sequencing and ARISA. 6th 

FEMS Congress of European Microbiologists, 7-11 June 2015, Maastricht, The 

Netherlands. 

8. Tytgat B., E. Verleyen, M. Sweetlove, D. Obbels, S. D‖hondt, A. Wilmotte, W. 

Vyverman, A. Willems. Biogeographic patterns in Antarctic lacustrine 

prokaryotes. 6th International Conference on Polar and Alpine Microbiology, 

6-10 September 2015, České Budějovice, Czech Republic. (1st prize of the 

poster competition). 

9. Tytgat B., E. Verleyen, S. D‖hondt, P. Clercx, E. Van Ranst, S. J. Roberts, A. 

Wilmotte, W. Vyverman, A. Willems. Bedrock and biotic influence on 

community composition in soils from the Sør Rondane Mountains, East 

Antarctica. 6th International Conference on Polar and Alpine Microbiology, 6-

10 September 2015, České Budějovice, Czech Republic. 

10. Wilmotte A., A. Willems, E. Verleyen, W. Vyerman, D. Velázquez, H. Dail 

Laughinghouse IV, J. Elster, K. Hughes. A plea for the creation of inviolate 

areas to protect reference areas for future microbiology research in Antarctica. 

6th International Conference on Polar and Alpine Microbiology, 6-10 

September 2015, České Budějovice, Czech Republic., 

11. Lara, Y., Durieu, B., Borderie, F., Stelmach Pessi, I., Crahay,C., Deblander, V., 

Geelen, N., Iovino, M., Defise, A., Laughinghouse, H. D., Wilmotte, A. 

Characterization of Leptolyngbya and Phormidium diversity in Antarctic 

biotopes, XXXIV SCAR Biennal Meetings and Open Science Conference, 

August 2016, Kuala Lumpur, Malaysia. 

12. Tytgat B., E. Verleyen, M. Sweetlove, B. Van de Vijver, K. Van den Berge, S. 

D‖hondt, D. Obbels, E. Pinseel, D. Hodgson, S. Imura, K. Sabbe, A. Wilmotte, 

L. Clement, A. Willems, the ANTDIAT consortium and W. Vyverman. Multi-

domain evidence for fine-scale bioregionalisation patterns in the Antarctic 

lacustrine microbiome. XIIth SCAR Biology Symposium, 10-14 July 2017, 

Leuven, Belgium.  
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13. Wilmotte A., B. Durieu, Y. Lara, D. Obbels, I. S. Pessi, E. Pinseel, M. 

Sweetlove, B. Tytgat, A. Van De Putte, B. Van De Vijver, E. Verleyen, W. 

Vyverman and A. Willems. Diversity and biogeography of microorganisms in 

microbial mats of Antarctic lakes. XIIth SCAR Biology Symposium, 10-14 July 

2017, Leuven, Belgium.  

14. Wilmotte A., A. Willems, E. Verleyen, W. Vyverman, D. Velazquez, A. 

Quesada, D. H. Laughinghouse, J. Kleinteich, D. A Pearce, J. Elster, K. Hughes. 

A strategy to protect reference sites for future microbiology research in 

Antarctica. XIIth SCAR Biology Symposium, 10-14 July 2017, Leuven, Belgium.  

15. Durieu, B., Baurain, D., Wilmotte, A., & Lara, Y. Cold Adaptation Strategy of 

the Antarctic Cyanobacterium P. priestleyi ULC007. Polar 2018, Where the 

Poles come together, Open Science Conference, 19 June 2018, Davos, 

Switzerland. 
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