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Abstract:

The impact of errors in the forcing, errors in the model structure and parameters, and errors in the initial conditions is investigated
in a simple hydrological ensemble prediction system. The hydrological model is based on an input nonlinearity connected with a
linear transfer function and forced by precipitation forecasts from the European Centre for Medium-Range Weather Forecast
(ECMWF) Ensemble Prediction System (EPS). The post-processing of the precipitation and/or the streamflow using information
from the reforecasts performed by ECMWF is tested. For this purpose, hydrological reforecasts are obtained by forcing the
hydrological model with the precipitation from the reforecast data.

In the present case study, it is found that the post-processing of the hydrological ensembles with a statistical model fitted on the
hydrological reforecasts improves the verification scores better than the use of post-processed precipitation ensembles. In the case
of large biases in the precipitation, combining the post-processing of both precipitation and streamflow allows for further
improvements. During the winter, errors in the initial conditions have a larger impact on the scores than errors in the model
structure as designed in the experiments. Errors in the parameter values are largely corrected with the post-processing. Copyright ©

2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Three main types of errors affect hydrological forecasts:
errors as a result of modelling (parameters and structure),
errors as a result of initial conditions, and errors as a result
of external forcings like precipitations.

Calibrating a hydrological model usually consists in
optimizing an objective function that compares model
output and observations. Methods have been developed
that find a global optimum in a robust and efficient way,
e.g. the shuffled complex evolution (Duan et al., 1992).
Uncertainties in the parameters may be assessed in a
Bayesian framework using the generalized likelihood
uncertainty estimation (refer to, e.g. Beven, 2001) or the
shuffled complex evolution Metropolis (Vrugt et al.,
2003). Implicitly assuming that all types of errors are
included in parameter uncertainty results in biases in
parameter values and underestimation of the confidence
interval of predictions (Ajami et al., 2007).

The structure of hydrological models should be
supported by the observations. In the Data-Based
Mechanistic approach (DBM, Young, 1998, 2012),
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different transfer functions are compared on the basis of
several criteria, and an efficient and parsimonious model
structure is selected if it has physical sense. Uncertainty as a
result of the model structure has been addressed by
combining the output of multiple models (e.g. Georgakakos
et al., 2004). In the Bayesian Model Averaging (BMA)
method, each model is weighted according to the likelihood
that it is the correct model (Ajami et al., 2007).

Uncertainties in initial conditions are dealt with by data
assimilation that aims at updating model state variables or
parameters using observations. Data assimilation is used in
hydrological modelling and forecasting with a variety of
methods and observations (refer to a review by Liu
et al., 2012). For instance, DBM methodology is suited
to incorporate a recursive filter and an adaptive gain for
real-time flood forecasting (Beven et al., 2012). The
observed streamflow has been assimilated to update the
soil moisture using variational assimilation (Seo et al.,
2003) and ensemble Kalman filter (Komma et al.,
2008). Assimilation of soil moisture products from
remote sensing in rainfall-runoff models has been
shown to improve the modelling performances (e.g. Brocca
et al., 2012).

When forecasting the streamflow beyond the response
time of the catchment, uncertainties about the quantitative
precipitation forecast are increasingly outweighing other
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sources of uncertainties. For seasonal forecasts, Ensemble
Streamflow Predictions (ESPs) are obtained by using
historical weather data to simulate an ensemble of
streamflow traces conditioned on the current
hydroclimatic state (Hashino et al., 2007). For several
years, forecast centres issue ensemble predictions by
integrating a Numerical Weather Prediction (NWP)
model from different initial conditions and with perturbed
physics in order to quantify uncertainties about the
forecasts (e.g. Molteni et al., 1996). It has become
widespread to use these ensembles as input to hydrolog-
ical models (e.g. Roulin and Vannitsem, 2005 and the
review by Cloke and Pappenberger, 2009). However,
meteorological forecasts suffer from the same types of
errors as mentioned above (model and initial conditions),
and ensembles are biased and generally underdispersed.
Post-processing techniques have been developed to
correct model outputs on the basis of past forecasts.
The following methods have been applied for precipita-
tion: logistic regression (Applequist et al., 2002; Hamill
and Whitaker, 2006), Extended Logistic Regression
(ELR; Wilks, 2009; Schmeits and Kok, 2010; Roulin
and Vannitsem, 2012), BMA (Sloughter et al., 2007,
Schmeits and Kok, 2010) and quantile regression
(Bremnes, 2004; Friederichs and Hense, 2008).
Operational NWP models are frequently modified. It
was therefore proposed to use state-of-the-art actual
models to reforecast past situations in order to provide
samples covering enough different meteorological situa-
tions to build robust statistical models for post-processing
subsequent forecasts (Hamill et al., 2004). Since March
2008, a reforecast data set is available at the ECMWF that
is produced with the same model system used to perform
the actual forecasts (Hagedorn, 2008). This data set is
updated every week with five member reforecasts of the
last 18 years at the same date (since June 2012, the last
20 years). Roulin and Vannitsem (2012) used this data set
in various settings for the post-processing of precipitation
predictions. Improvement in the Continuous Ranked
Probability Score (CRPS) is found for a window of
5 weeks that is compatible with an operational setting.
Biases in hydrological predictions can be corrected on
the base of reference simulations and the corresponding
observations. In the context of ESP, Hashino ez al. (2007)
have compared three post-processing methods — namely,
the event bias correction, the regression, and the quantile
mapping to adjust each model-simulated trace indepen-
dently. Pagano et al. (2012) have proposed an ensemble
dressing method also based on the difference between
historical simulations and observations. Wood and
Schaake (2008) used the correlation of forecast ensemble
means with observations to generate a conditional
forecast mean and spread. The last two approaches do
not preserve ensemble traces. Madadgar et al. (2012)
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show the improvement of the post-processing based on a
copula function over the quantile mapping technique.
Other nonparametric (Van Steenbergen et al, 2012;
Brown and Seo, 2013) and parametric techniques (Reggiani
and Weerts, 2008; Engeland and Steinsland, 2014) have
been recently proposed. The use of post-processed
precipitation for ensemble streamflow forecasts has been
tested (Zalachori et al., 2012; Verkade et al., 2013); the
results show that the errors linked to hydrological modelling
remain a key component to the total predictive uncertainty. In
this context, post-processing is recognized as an important
step to achieve forecasts that are unbiased and reliable and
have the highest skill and accuracy possible and that are
coherent with the climatology (van Andel et al., 2013).

As discussed above, the methodologies used to tackle
the different sources of uncertainties are numerous and
interconnected, but there is no clear picture of the impact
of post-processing of either the precipitation forcings or
the hydrological forecasts in the presence of the different
potential sources of errors. The present study aims at
clarifying this impact. This will be tackled by introducing
errors in the model structure as the difference between
the outputs of a first model taken as the ‘truth’ and of a
second simpler model. Sensitivity to errors in the model
parameter and in the initial conditions is also analysed.
Forcing uncertainties are taken from operational ensem-
ble predictions. The section on Methodology presents
the hydrological ensemble prediction system compo-
nents — the hydrological model and the ensemble
predictions of precipitation, the post-processing methods
applied, the scores used for verification, and the
experiments performed. The results of these experiments
are described in the Results Section, and conclusions are
then drawn.

METHODOLOGY

Test basin

The test basin is the Ourthe Orientale at Mabompré in
the Ardennes region in Belgium (area 317 km?, elevation
280-650 m, and mean annual rainfall 1029 mm, Figure 1).
Data from October 1990 to September 1995 are used for
the model development (Figure 2). Discharge data were
measured at the stream gauge of Mabompré. Precipitation
data consist of daily pluviometric observations averaged
over the catchment using the Thiessen method, and
temperature data were measured at the Nadrin station at
the edge of this basin.

The hydrological model

In this study two hydrological models are used. Their
structures have been identified on observed precipitation,
temperature and discharge time series following the DBM
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Figure 1. Location map of the Ourthe Orientale catchment in Belgium. Grid points (+) of EPS archives corresponding to the T399 horizontal resolution

in use at ECMWF from 2006 to 2010
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Figure 2. Time series of areal precipitation (mm dayfl), streamflow (m3 s"), and temperature (°C) from October 1990 to September 1995, Ourthe

Orientale catchment

approach (Young, 1998, 2012). This inductive procedure
results in a parsimonious model that explains the
dominant modes contained in the data and can be
interpreted in physically meaningful terms. Both models
are of the ‘Hammerstein’ type connecting an input

Copyright © 2014 John Wiley & Sons, Ltd.

nonlinearity and a linear transfer function (TF). The two
models differ by the nonlinearity between the input
rainfall and ‘effective rainfall’. The first model will be
used to build a reference discharge series that will serve
for identifying and estimating the second model and for

Hydrol. Process. 29, 1434-1449 (2015)
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evaluating the forecasts issued from the different
experiments. The second model will be used only in
‘forecasting mode’; its structure is simpler as it does not
take temperature into account as input data nor simulates
a soil component. Instead, the nonlinearity for effective
precipitation depends on the value of the flow.

The first model is depicted in Figure 3. The input data
are the observed rainfall amount r and temperature ¢. This
model will be referred to as DBMS in the following. This
model was inspired from Young (2001) except for the
structure of the storage model and the use of temperature.
The rectangular boxes represent first-order linear TFs.
The first one simulates the water status of the basin s. The
TF from effective precipitation to discharge has been
identified as a second-order process and can be split into
two first-order parallel linear TFs that simulate the fast
and slow components of the flow, respectively x; and x,.
When used in forecast mode, the decomposed parallel
pathway form permits to avoid instability occurring with the
second-order TF form (Young and Tomlin, 2000). Two
squares with thick borders sketch the nonlinear functions
used for the evaluation of effective precipitation: the first
one, f(t), is used for the input v of the water storage model
and the second one, g(s), for the input u of the routing TF.
The full stochastic model comprises an error model & that is
assumed to be 0. The model is described by the following set
of equations at time step k:

fl if 1, < 64,
fi=Rf, 0151 <0y, (1a)
f3 if <1
Vi :fk~rk (lb)
Sp = c8p—1 +dvis (Ie)
+ g5 if sy < o,
k:{gl 825k K (1d)
g3+ gusk  if o<sy,

Uy = Gk (le)
X1k = O1-X( k-1 + B Up—s (1f)
Xok = O-X2 k-1 + forlti—s (1g)

X = X1 + Xok (1h)

The parameters of the deterministic part of the model
are {f1,f2,/3,01,02,¢,d,0,81, 82, 83, 84,7, 1, 02, f1, B2}
Note that the delay ¢ is equal to 1 day for the three
TFs. Let us remind the readers that this model is designed
for comparative experiments in an idealized framework;
therefore, the potential overfitting relative to measured
series has not been considered, and parsimony refers
rather to the second model. For this development,
algorithms from the CAPTAIN toolbox for Matlab
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(Taylor et al.,, 2007) have been used. The State-
Dependent Parameter (SDP) algorithms allow for the
evaluation of nonparametric dependence (f(t), g(s) and
h(q)) and for choosing functions for the nonlinearity
(Equations (1a), (1d) and (2a)). The Refined Instrumental
Variable algorithms (RIVBJID) are used to identify the
order and evaluate the parameters of a TF between the
effective precipitation and the streamflow.

The second model is sketched in Figure 4, and the
detailed equations are provided in Equation (2). During
the first forecasting step, the nonlinearity for the effective
rainfall is estimated using the discharge observed on the
previous day as a surrogate of the water status of the
basin. For the following steps, the deterministic output of
the TF, x; _ 1, is used. This model will be called DBMQ.

h + hox, ifx <o,
e — { 1+ hox ! k (2a)
hs if o< x;
uy = hy-ry (2b)
Xi g = QX1 -1 + P15 (20)
Xok = Oo-X2 k-1 + fBrttk—s (2d)
Xp = X1+ X2k (2e)

As initial conditions of this second model, we take x,
from the reference simulation and decompose it in two
flows according to

x10 = G1/(G1 + G2)xo (3a)

X0 = Gy2/(Gi + G2)xo (3b)
with the steady-state gains G,;=p/(1 —a;) (e.g. Young
and Tomlin, 2000). Another possibility is to use the initial
conditions from the flows of the two pathways in the
reference simulation as if they could be observed. This
second approach will be used to test the impact of the
choice of the initial conditions. In this latter setting, the
model will be named DBMQI.

ECMWF Ensemble Prediction System and reforecasts

Ensemble predictions from ECMWF-EPS issued daily at
00 UTC (Universal Time Coordinated) during the period
from 12 March 2008 to 31 December 2012 have been used.
This period starts with a change to the Integrated Forecast
System cycle c32r3, also corresponding to the beginning of
the availability of reforecasts. There are 11 different cycles
during this period of almost 5 years including a horizontal
resolution change from about 50 to 32km and the
implementation of the ensemble data assimilation scheme.
Each ensemble is composed of 1 control and 50 perturbed
members. The forecasted precipitation has been cumulated
over 24 h from 06 UTC to 06 UTC to match observations as

Hydrol. Process. 29, 1434—-1449 (2015)
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Figure 3. Block diagram of the simulation model (DBMS); the squares represent nonlinearity and the rectangles first-order linear transfer functions
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Figure 4. Block diagram of the forecast model (DBMQ); the square represents nonlinearity, and the rectangles represent first-order linear transfer functions

closely as possible. The cumulated precipitation has been
averaged over the test catchment. As we focus on
uncertainties in precipitation, observed temperature is used
even in forecast situations.

The reforecasts are issued once a week. They are made
available on Monday for situations starting 17 days later
(Thursday) but for the past 20 years. This schedule allows
for defining windows extending to 2 weeks ahead of the
current week. A calibration window of 5 weeks (2 weeks
before and 2 weeks after) is chosen, and 18 years of past
situations are used. This means that for every week, a data
set of 90 ensemble forecasts is available. A few weeks
before a forecast system change, pre-operational ensem-
bles computed with the new cycle are made available.
Reforecasts corresponding to this period are also available
so that the 5-week window of reforecasts is still available
after the change in the operational system without mixing
reforecasts from different cycles. Reforecasts are based on
five member ensembles, one control and four perturbed
members. Like for EPS, precipitation is cumulated over
24h and is spatially averaged.

Post-processing

Three post-processing methods, one for precipitation and
two for the streamflow, are used. For precipitation, ELR
(Wilks, 2009) is implemented as Roulin and Vannitsem
(2012), preserving the temporal structure of individual
members in such a way that it can be used as input in the
hydrological model. The parameters are calibrated by

Copyright © 2014 John Wiley & Sons, Ltd.

maximizing a likelihood function. A correction is applied
for the bias in the regression parameters because of the small
size of the ensembles in the reforecast data set (Roulin and
Vannitsem, 2012). To post-process a raw precipitation
ensemble, the 51 members are first ranked and assigned a
probability. The corresponding quantiles are then extracted
from the post-processed marginal predictive cumulative
distribution function based on the reforecasts and finally
reordered with respect to the raw ensemble values.

For the streamflow, the variance inflation (INFL)
method is adopted (Wood and Schaake, 2008; Johnson
and Bowler, 2009). This method is based on the
conditions that the climatological variance of the
ensemble members should be the same as the variance
of the truth and that the correlation of the ensemble
members with the ensemble mean should be the same as
the correlation of the truth with the ensemble mean. It also
satisfies that the mean-square error (MSE) of the
ensemble mean is minimized and that the ensemble
spread is, on average, representative of the uncertainty in
the mean (Johnson and Bowler, 2009). A generalization
to many predictors is also proposed (Van Schaeybroeck
and Vannitsem, 2014). At time ¢, the ith ensemble
member f, = f, + ¢ is modified as follows:

g :ﬂx+a(f, _:uf> + Be, )

where u, and uy are the mean of the observations and of
the forecasts in the calibration data set and

Hydrol. Process. 29, 1434-1449 (2015)
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a=ps (5a)

2\ Ox
(1-r2)
where Py is the correlation of the observation with the
ensemble mean, o, is the standard deviation of the
observations, o} is the standard deviation of the ensemble
mean, and o, is the square root of the average ensemble
variance. The parameters of the calibration are estimated
based on the hydrological reforecasts h; and corresponding
true values x,. Like for the ELR, care has to be taken for the
small size of the reforecasts (K = five members). Among the
statistics to be estimated, only the variance of the ensemble
mean has to be corrected for the ensemble size:

b= (5b)

0]% = (7% — <O'i>/K 6)

where the angle bracket denotes the average over a set of
realizations. The correction of the variance of the
ensemble mean has to be taken into account in the
estimation of the correlation coefficient p -; Note that
the covariance cov(x, %) is not affected by the ensemble
size and that the average of the variances of the
reforecasts over the calibration data set is unbiased
(62 = (07)). The corrected parameters are then

a= M (7a)

o — (o) /K

cov?(x, h) o2
o2(o7 — (a2)/K) ) (o0)

The parameters are estimated on the logarithm of
observations and of the reforecasts so that the distributions
are closer to a Gaussian. A post-processed logarithm of the
streamflow is exponentiated, and the verification is
performed in discharge units. Separate in-sample tests have
shown that the INFL performs well at making the mean of
the corrected ensemble spread match the mean squared error
in the log scale, but some distortion arises when the
corrected discharges are transformed back.

Error in Variable Model Output Statistics (EVMOS)
was introduced by Vannitsem (2009) recognizing the
presence of errors in both observations and model
observables. This scheme allows for the maintenance of
an appropriate variability of the corrected forecasts even
for long lead times and provides a framework in which
both the deterministic and the ensemble forecasts can be
corrected. For one predictor, hydrological ensembles are
post-processed for every member i following

1—

B= (7b)

Copyright © 2014 John Wiley & Sons, Ltd.
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g =0+¢f 8)
and two parameters are estimated:
0=, — €us (9a)
—_ (9b)
of

Preliminary tests have shown that the method performs
better if all five members of the hydrological reforecasts
are taken into account. Therefore, the training data set
corresponding to one window of 5weeks and one lead
time comprises 5 x5 x 18 =450 couples of past forecasts
and observations. Again, the regression is computed after
a logarithmic transformation of the streamflow data in
order to get approximately Gaussian forecast error.

Verification

The ensembles are evaluated with a set of summary
measures including the bias or mean error (ME)
ME = (f —x) (10)

the root-mean-square error of the ensemble mean (RMSE)

RMSE — <(7—x)2> (11)
and the average spread
SPREAD = <a}> (12)

where is the ensemble mean, o7 is the ensemble variance,
x is the observation. To be statistically consistent, the
average ensemble variance should match the MSE of the
ensemble mean (Talagrand et al., 1997), or, equivalently,
the SPREAD should be equal to the RMSE.

Further insight into the probabilistic skill of the
ensemble is given by the CRPS, evaluating the distance
between two distributions:

CRPS = |” _[P(x) — P,(x)dx (13a)
0, x<ux,
P,(x) = 13b
w={} "2 (130
P(x) = pizé, for x; < x < xiqq (13¢)
where {x;,---,xx} are the ordered members of the

ensemble of size K and x, is the observation.

Hydrol. Process. 29, 1434—-1449 (2015)
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We use the methodology developed by Hersbach
(2000) to compute the CRPS for an ensemble system
and to decompose the average value into three
components:

(CRPS) = UNC + REL — RES (14)

where UNC is the uncertainty and is the best achievable value
of CRPS in case only climatological information is available,
REL is the reliability testing whether, on average, the
frequency that the verifying analysis was found to be below
the middle of the interval number i is proportional to #/K, and
RES is the resolution that measures the superiority of the
forecast system with respect to a forecast system only based
on climatology. In the following, CRPS will simply denote its
average value.

Experiments

The different model versions have been combined with
the three post-processing methods in a set of experiments to
investigate the potential improvement of the ensembles
using the information contained in the reforecasts. Acro-
nyms are summarized on Table I. The hydrological
ensembles obtained with DBMS are used to study the
impact of errors in the forcing. The sensitivity to the values
of the model parameters is tackled by adding errors in the
DBMS model. First, in the DBMSPF model version, the
function (Equation (1d)) used to estimate the effective
precipitation as a fraction of the input precipitation is shifted
by an amount of —0.04 and +0.08. The same change is
applied for the whole range of the model state variable that
represents the soil water status. In the DBMSPS model

Table I. Models and post-processing methods associated with the
experiment’s acronyms

Model

DBMS Reference simulation model

DBMSPF Sensitivity to effective precipitation function

DBMSPS Sensitivity to slow flow parameter

DBMSPQ Sensitivity to quick flow parameter

DBMQ Forecast model

DBMQI Initial conditions from reference simulation

Post-processing

RAW Forcing with raw precipitation ensembles

ELR Precipitation ensembles corrected with extended
logistic regression

INFL Raw hydrological ensembles corrected with the
inflation method

EV1 Raw hydrological ensembles corrected with the
EVMOS with one predictor

ELR/INFL ELR followed by INFL post-processing

ELR/EV1 ELR followed by EV1 post-processing

Copyright © 2014 John Wiley & Sons, Ltd.
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version, the coefficient a; of the slow flow (Equation (1f)) is
changed from the value of 0.978 in the reference model to
either 0.95 or 0.99. In the DBMSPQ model version, the
coefficient a, of the quick flow (Equation (1g)) is set to 0.4
and to 0.7 instead of the value of 0.55 as in the reference
model. As already indicated in Section on The Hydro-
logical Model, the DBMQ model has a simpler structure
than DBMS. In order to investigate the impact of the
initial conditions, the DBMQI version of this model takes
the values of initial flows of the slow and quick paths from
the reference simulation of DBMS from which
streamflow ‘observations’ are supplied.

The basic experiments consist in the forcing of the
models with the raw precipitation ensembles, e.g. DBMS-
RAW (i.e. no post-processing). Then, the precipitation
ensembles are modified according to the logistic distri-
butions and are used as input to the hydrological models,
e.g. DBMQ-ELR. The raw reforecasts are also used in the
hydrological models and provide the hydrological
reforecasts. The parameters of post-processing, INFL
and EVMOS with one predictor (EV1), are estimated on
the basis of these hydrological reforecasts and the
reference simulation results at the past dates. These
parameters are used to post-process the raw hydrological
ensembles, e.g. DBMQI-INFL and DBMQI-EV1. The
last set of experiments consists in applying successively
the post-processing of precipitation and the post-process-
ing of the hydrological ensembles. The information used
for both steps is coming from a 5-week window of
reforecasts: First, the parameters of the ELR are taken to
post-process the same five-member reforecasts that were
used for calibration; next, these modified five-member
precipitation ensembles serve as input to a hydrological
model to provide improved hydrological reforecasts; then,
the hydrological reforecasts together with the corresponding
discharge values from the reference simulation allow to
obtain new parameter values for the INFL or the EVMOS
method. Finally, these new parameter sets are used to post-
process hydrological ensembles that are resulting already
from the forcing with ELR-corrected precipitation ensem-
bles. For instance, DBMS-ELR/INFL corresponds to the
post-processing of DBMS-ELR ensembles. The same
correction factors for the ensemble size that were applied
in the optimization of the parameters of the ELR (refer to
Roulin and Vannitsem, 2012) have to be used to modify the
five-member precipitation ensembles.

RESULTS

Ensemble predictions of precipitation

The raw ensemble predictions of areal precipitation are
validated against the corresponding values obtained by
spatially averaging rain-gauge data. Results are presented

Hydrol. Process. 29, 1434-1449 (2015)
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separately for the winter (October to March, Figure 5) and
for the summer (April to September, Figure 6). The raw
ensemble predictions of areal precipitation are character-
ized by small values of the ME during the winter ranging
from —0.07 to 0.2mmday ' and by positive values
during the summer decreasing from 0.8 on the first
forecast day (D +1) to 0.5mmday ' at D+9. During the
forecast range in the winter, the RMSE grows from 2.3 to
4.2 mmday'.The RMSE is larger during the summer as
it increases from 3.7 to 4.9 mmday . The spread of the
raw ensembles increases with the lead time. For the two
seasons, the average spread is lower than the correspond-
ing RMSE values, which is an indication that the raw
ensembles are underdispersed. CRPS also increases with
lead time. At the beginning of the forecasts, CRPS values
during the winter are lower than CRPS values during the
summer. These differences correspond to lower values of
the reliability (REL) and higher values of the resolution

ME
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0.4
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0
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0 5 10

CRPS

2
15
1
0.5
0

0 5 10
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0.4
0.3
0.2
o ¥_/

0

0 5 10

Lead time (days)

1441

(RES). Remembering Equation (14), these two compo-
nents contribute to better CRPS during the winter despite
that the uncertainty component is higher for the winter
(1.96 mmday ') than for the summer (1.84 mmday').
At the end of the forecast, the differences are less
important except for the uncertainty components depend-
ing only on the validation samples.

The post-processing of the ensembles using the ELR
results for the winter in a positive bias. The RMSE is
almost unchanged; the spread is increased, leading to
overdispersion, and the CRPS is decreased. This
improvement of the CRPS is mainly because of a
decrease of the reliability component. For the summer,
a decrease of the bias is obtained, which remains positive
around 0.3 mmday ! throughout the forecast range. The
RMSE is increased, and the CRPS is decreased the first
six forecast days. Like for the winter, this CRPS
improvement is due to the decrease of the reliability

RMSE
6
4 /
_—

2

00 5 10

SPREAD

6
4
2
0

0 5 10

RES
1.5
1
\\
0.5 \

0
-0.5

5 10

Lead time (days)

Figure 5. Verification of the ensemble predictions for precipitation during the winter: (blue) raw ensembles, (green) post-processed using the extended
logistic regression with parameters fitted on reforecasts. Mean error (ME), root-mean-square error (RMSE), continuous ranked probability score (CRPS),
square root of the average ensemble variance (SPREAD), reliability (REL) and resolution (RES) terms of the CRPS. All is expressed in mm day71
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Figure 6. As in Figure 5 but during the summer

term, whereas the resolution term is degraded mostly
from D+7, cancelling out the improvement of the
reliability at the end of the forecast.

Overall, the post-processing of precipitation based on
reforecasts is correcting the ensemble reliability, but an
additional bias is introduced and is believed to be
associated with the number of reforecast ensemble
members even if considerable correction of the parameter
has already been obtained as in Roulin and Vannitsem
(2012). This aspect needs further investigations based on
additional reforecasts.

Hydrological ensemble predictions

Winter. The DBMQ model is taken as the hydrological
model used to forecast the streamflow simulated with the
DBMS model. The first experiment consists in forcing the
model with the raw precipitation ensembles (DBMQ-
RAW). The verification results for the winter are
presented in Figure 7. The bias is negative starting from

Copyright © 2014 John Wiley & Sons, Ltd.

D+3 and stays above —0.2m>s™'. The RMSE grows
with the forecast horizon faster than the average spread of
the ensembles does. This indicates that the hydrological
ensembles are underdispersed. The same diagnostic was
already derived for the raw precipitation ensembles.
Because of the delay of 1 day in the model, the forecast at
D +1 is deterministic with the input of the precipitation
observed the day before. Hence, the first value of the
CRPS corresponds to the mean absolute error, and the
reliability and resolution components depend on how
the errors distribute into positive and negative values. The
CRPS grows with the forecast horizon and can be
decomposed into three terms: uncertainty that stays
almost constant during the forecast range because it only
depends on the verification sample (2.6m>s~! for the
winter), the reliability starting from about 0.3m>s™! at
the first forecast day and decreasing afterwards, and the
resolution also decreasing.

We now analyse the verification results of the five post-
processing methods applied to the DBMQ model to

Hydrol. Process. 29, 1434-1449 (2015)
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Figure 7. Verification of hydrological ensemble predictions with DBMQ during winter: (blue) DBMQ-RAW, (green) DBMQ-ELR, (light blue) DBMQ-
INFL, (light blue, dashed) DBMQ-ELR/INFL, (red) DBMQ-EV1, and (red, dashed) DBMQ-ELR/EV1. All is expressed in m’s

mitigate errors in the forcing and in the model structure.
Forcing DBMQ with post-processed precipitation ensem-
bles (DBMQ-ELR) results in a positive bias increasing
with lead time. This follows the trend of the bias of the
post-processed precipitation ensembles. The RMSE is
almost unchanged. The spread is increased so that the
new hydrological ensembles are overdispersed beyond
D +5. The CRPS is decreased because of a lowering of
the reliability component and despite a decrease of the
resolution component at D+2 and D + 3.

The variance inflation method is applied on the
hydrological ensembles obtained using the DBMQ model
(DBMQ-INFL). The bias is well corrected, but the RMSE
is slightly increased. The spread is increased to values
closer to RMSE than for DBMQ-ELR ensembles. The
CRPS is improved because of both the reduction of the
reliability term and the increase of the resolution term.
The post-processing of precipitation ensembles followed
by the post-processing of streamflow ensembles (DBMQ-

Copyright © 2014 John Wiley & Sons, Ltd.

ELR/INFL) does not provide further improvements as
compared with the INFL alone because the bias is
degrading the last three forecast days.

The EVMOS post-processing (DBMQ-EV1) results in
almost no change in ME and RMSE, and the spread is
decreased away from values reached by RMSE. The CRPS
is improved because of an increase of the resolution
component. Unlike the two previous methods (ELR and
INFL), the reliability component is only slightly changed.
The post-processing of precipitation ensembles with ELR
followed by the post-processing of DBMQ hydrological
ensembles (DBMQ-ELR/EV 1) results in a negative bias, no
change in RMSE and a spread similar to the spread of the
raw hydrological ensembles. The benefit of combining both
methods consists in the improvement of the reliability
component. Together with an increased resolution compo-
nent, it contributes to a decrease of CRPS.

The hydrological ensembles (DBMQ-RAW) are
underdispersed. For a perfectly reliable system, we would

Hydrol. Process. 29, 1434—-1449 (2015)
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expect that the observation is an outlier for a percentage
of situations equal to 2/(K+ 1) where K is the size of the
ensemble, that is, 4% for K=51. During the winter, it is
as high as 63% at D +2 and decreases to 16% at D+ 10.
There are more outliers larger than any ensemble member
than lower (respectively 40 and 23% at D+2). The
number of outliers changes with the post-processing
method in a way that is consistent with the changes in
reliability. For the winter, the EVMOS post-processing
does not improve the number of outliers, whereas the four
other methods do. The ELR/INFL performs best. At
D +10, the methods using the corrected precipitation
(ELR, ELR/INFL and ELR/EV1) result in overdispersion,
and the number of outliers is 0 or 1%.

Among the five post-processing methods tested, the
inflation performs best for winter situations with respect
to the bias, the CRPS, the reliability and to the average
spread being closer to the RMSE.
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The validation results of the hydrological ensembles
obtained by forcing the DBMQ model with the raw
precipitation ensembles (DBMQ-RAW) are compared with
the results of the perfect model situation (DBMS-RAW) as
well as with those obtained with the experiment using
correct initial conditions (DBMQI-RAW) in Figure 8. By
design, DBMS-RAW has no error at D+ 1, and the
resolution component of the CRPS is equal to the
uncertainty component. The RMSE grows with the lead
time only because of the errors in the forcing. The difference
between CRPS values of DBMS-RAW and DBMQ-RAW
decreases with lead time because of the sharp decrease of the
reliability component for DBMQ-RAW, whereas the
difference between the values of the resolution components
of DBMS-RAW and DBMQ-RAW does not vary much
throughout the forecast. When taking the initial conditions
from the reference simulation (DBMQI-RAW), the RMSE
is restored to the values of the perfect model situation. The

RMSE

Lead time (days)

Figure 8. Verification of hydrological ensemble predictions during winter: (blue) DBMQ, (light blue) DBMQI, (green) DBMS, (continuous) RAW, and
(dashed) ELR/INFL. All is expressed in ms!
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values of the CRPS with DBMQI-RAW are also closer to
those of DBMS-RAW, and the difference between both
vanishes from D + 7 onwards. This is because of a lowering
of the reliability component compared to DBMQ-RAW and
because of the increase of the resolution component close to
the values of DBMS-RAW. During the winter, the impact of
errors in the initial conditions seems to dominate. The effect
of post-processing of the different hydrological ensembles is
also shown in Figure 8. Only the combined pre-processing
and post-processing with ELR/INFL is displayed. The post-
processing improves the RMSE of the DBMS ensembles,
whereas it degrades the RMSE of DBMQ and DBMQI.
The post-processing improves the CRPS of DBMQ
ensembles better than the CRPS of DBMS and of
DBMQI. The reliability of the post-processed ensembles
is similar for the three systems. The resolution is
improved for DBMQ mitigating partly the lack of good
initial conditions.
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The different post-processing methods applied to
DBMS and DBMQI ensembles are compared in figures
included in the Supporting Information. It can be noted
from these results that the pre-processing (ELR) degrades
the bias that becomes increasingly positive with forecast
lead time like for DBMQ. The post-processing with
EVMOS does not modify the average spread, and it does
not improve the reliability of DBMS-EV1 and partly
improves the reliability of DBMQI-EV1. The combina-
tion of ELR/EV1 allows for increasing the spread and
correcting the reliability.

Summer. The hydrological ensembles obtained with
DBMQ during the summer are now analysed (Figure 9).
The forcing with the raw precipitation ensembles
(DBMQ-RAW) results in a positive bias increasing with
the lead time associated with the large positive bias of the
precipitation ensembles. The RMSE values also increase,
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Figure 9. Verification of hydrological ensemble predictions with DBMQ during summer: (blue) DBMQ-RAW, (green) DBMQ-ELR, (light blue)
DBMQ-INFL, (light blue, dashed) DBMQ-ELR/INFL, (red) DBMQ-EV1, and (red, dashed) DBMQ-ELR/EV1. All is expressed in m’s!
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exceeding the corresponding values of the average spread
except the last 3 days. The average CRPS also grows with
the forecast days.

During the summer, the lowering of the positive bias of
the precipitation ensembles with the ELR pre-processing
results in the lowering of the bias of the DBMQ-ELR
ensembles. This, in turn, induces a decrease of the RMSE
(except for D+ 10). The average spread is overdispersed.
The CRPS is improved because of the reduction of the
reliability term, whereas the resolution is slightly
degraded.

The inflation method (DBMQ-INFL) allows reducing
the bias more significantly than with the forcing with
ELR-corrected precipitation ensembles. The RMSE
is also reduced substantially, and the average spread is
reduced (from D +5 onwards) consistently. The CRPS is
improved thanks to a large decrease of the reliability and
a significant increase of the resolution. Unlike the winter,
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the post-processing of precipitation ensembles followed
by the post-processing of hydrological ensembles
(DBMQ-ELR/INFL) results in further improvements of
the bias and of the CRPS as the corrected hydrological
ensembles are almost perfectly reliable with a resolution
similar to DBMQ-INFL. The results with EVMOS
(DBMQ-EV1 and DBMQ-ELR/EV1) are similar to those
with the inflation method.

During the summer, when a large positive bias is present
in the forcing precipitation ensembles, all methods
improve the ME, RMSE and CRPS, and the best scores
are achieved when applying successively the pre-processing
of the precipitation ensembles and the post-processing of the
hydrological ensembles.

We now compare the DBMS-RAW and DBMQ-RAW
ensembles during the summer (Figure 10). In the first
forecast day, there is no error in DBMS-RAW, but the
scores, ME, RMSE and CRPS grow with lead time faster

RMSE

SPREAD

Lead time (days)

Figure 10. Verification of hydrological ensemble predictions during summer: (blue) DBMQ, (light blue) DBMQI, (green) DBMS, (continuous) RAW,
and (dashed) ELR/INFL. All is expressed in m's!
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than that for DBMQ-RAW. Like for the winter, the
DBMS-RAW ensembles have a better resolution during
the forecast range that is offset by the rapid loss of
reliability after the sixth forecast day. This should be
related to the fact that DBMQ is not using information
about temperature, and the variability allowed by this
model is lower than the variability in DBMS output.
With the correct initial conditions taken from the
reference simulation, the ensembles (DBMQI-RAW)
have a positive bias at D+ 1 that has a larger value than
that for DBMQ-RAW. For longer lead times, the ME,
RMSE and CRPS have the worst values of the three
systems. Only the resolution term of the CRPS with
DBMQI-RAW is improved during the forecast. To
understand this feature, one must note that the calibration
of the model parameters is performed once for all seasons
and is more sensitive to large events occurring during the
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winter. During the summer, the difference between the
two models is such that the initial conditions taken from
DBMS are not suitable for DBMQ, and a data
assimilation scheme would probably improve the hydro-
logical ensembles.

The results of the post-processing (ELR/INFL) for the
three models (DBMS, DBMQ and DBMQI) are com-
pared in Figure 10. Results with the different post-
processing methods applied to DBMS and DBMQI
ensembles during the summer are included in the
Supporting Information. With the post-processing, almost
all the scores are improved to similar values. The
resolution for DBMQ is clearly improved, whereas it is
slightly degraded for DBMS and DBMQI. The post-
processed ensembles are almost perfectly reliable for the
three models. The CRPS follows the trend of the
resolution, with DBMQ very close to DBMS and
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Figure 11. Verification of hydrological ensemble predictions with DBMSPF (error in the effective precipitation function) during winter: (blue) optimal
parameter values for the function g, (refer to Section on Experiments), (red) gx=gx—0.04, (green) gy =gx+0.08, (continuous) DBMSPF-RAW,
(dashed) DBMSPF-EV1. All is expressed in m's !
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DBMQI. For the summer, there is a clear benefit to post-
process the hydrological ensembles.

Errors in model parameters

Finally, the sensitivity to DBMS model parameters is
analysed. Three parameters have been tested (refer to
Section on Experiments). The results are presented for the
parameter of the effective precipitation during the winter
only (Figure 11), and the results for the other parameters
and for the summer may be found in the Supporting
Information. The range of the tested parameter values is
such that the ME is significantly changed. For instance,
decreasing the value of the parameter of the effective
precipitation induces a negative bias throughout the
forecast range, while on the other hand, increasing this
value results in a positive bias. The post-processing has
been applied in this context, and only EV1 has been
plotted in Figure 11. The hydrological ensembles
obtained with errors in the parameters are considerably
corrected using EV1 with values (ME, RMSE and CRPS)
close to the ones obtained with the optimal parameters.

The same analysis has been performed with errors
added to the values of the parameter of the fast flow and
of the slow flow (Supporting Information) with the same
qualitative conclusions. The other post-processing
methods have also been applied in the context of the
DBMS model with errors in the parameters (not shown).
The differences between the methods are similar to the
differences already highlighted. In summary, the post-
processing based on reforecasts effectively corrects errors
due to the presence of suboptimal parameters.

CONCLUSIONS

In this study, the impacts of errors in the forcing, the
model structure and parameters, and the role of initial
conditions have been analysed using a system consisting
of precipitation forecasts from the operational ensemble
prediction system of ECMWEF and two hydrological
models based on a linear TF between effective rainfall
and streamflow. The structure of the two models differs in
the way that the nonlinearity between input precipitation
and effective rainfall is controlled: the first model using
temperature and a simple soil storage representation and
the second using the observed or forecasted streamflow as
the surrogate of the catchment wetness status. The impact
of errors was studied by means of a set of verification
scores of the resulting hydrological ensemble predictions
against a reference simulation performed with the first
hydrological model forced with observed precipitation
and temperature.

To improve these ensemble forecasts, the use of post-
processing techniques was investigated. To this aim,

Copyright © 2014 John Wiley & Sons, Ltd.
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hydrological reforecasts were constructed by forcing the
hydrological models with meteorological reforecasts
produced operationally using the same NWP model
version as that used for the ensemble predictions. As
clearly demonstrated, the post-processing based on the
information of the hydrological reforecasts improves
the reliability and the resolution of the ensembles with
the second model. It also improves the reliability of the
reference model and of the forecast model with known
initial conditions but not their resolution. Post-processing
the precipitation only does not improve the resolution of
the hydrological ensembles indicating the necessity of
post-processing the hydrological ensembles. This, in turn,
advocates for the development of hydrological reforecasts
as developed in the present work.

Good initial conditions for the forecast model are
necessary to obtain the best resolution, but the post-
processing mitigates the lack of this information.
During the summer, the post-processing must be
applied together with the use of better initial conditions
in order to achieve the best scores. Finally, altering the
parameters of the reference model degrades the scores
of the resulting ensembles, but post-processing im-
proves these scores that converge to the values of post-
processed ensembles resulting from the model version
with optimal parameters.
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