Chapter 45
Reliable Probabilities Through Statistical
Post-processing of Ensemble Forecasts

Bert Van Schaeybroeck and Stéphane Vannitsem

Abstract We develop post-processing approaches based on linear regression that
make ensemble forecasts more reliable. First of all we enforce climatological reli-
ability (CR) in the sense that the total variability of the forecast is equal the vari-
ability of the observations. Second, we impose ensemble reliability (ER) such that
the spread around the ensemble mean of the observation coincides with the one of
the ensemble members. Since, generally, different ensembles have different sizes,
standard post-processing methods tend to overcorrect ensembles with large spreads.
By taking variable values of the error variances, our forecast becomes more reliable
at short lead times as reflected by a flatter rank histogram. We illustrate our findings
using the Lorenz 1963 model.

45.1 Introduction

The atmosphere (and its climate) is a complicated system involving multiple com-
ponents, each with their own time and spatial scales, in constant interaction with one
another. This system displays the property of sensitivity to initial conditions dras-
tically limiting its predictability horizon [3]. This property is also shared by many
deterministic detailed atmospheric models, reflecting the chaotic nature of their dy-
namics.

Operational numerical weather and climate models suffer from the presence of
both initial-condition and modeling errors. In particular, even though during last
decades the amount of satellite observations has increased tremendously, a substan-
tial lack of observations above the oceans remains allowing room for improvement
on the quality of initial conditions. In addition, it is nowadays also realized that
model errors (errors due to unresolved scales, ill-tuned model parameters and ne-
glected interactions between different components of the climate system) play a
major role in the deterioration of forecasts as a function of lead time [6].

The recognition of these intrinsic uncertainties on the initial conditions and
model physics forms the starting point of current-day weather forecast practice,
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through the development of an ensemble system in which a set of trajectories are
integrated in time starting from different initial conditions, and/or using different
model physics. The aim of using ensembles is to produce a probabilistic instead of a
deterministic forecast. The spread of the ensemble around its mean can be viewed as
an uncertainty measure of the current forecast and provides the possibility to evalu-
ate the different potential scenarios that could be followed by the atmosphere. This
uncertainty information is of crucial importance as the reliability of the forecast may
be strongly flow dependent. However, despite huge efforts at constructing ensem-
bles which produce a good estimate of uncertainty, all experiments show that en-
semble forecasts are consistently under-dispersive or overconfident for longer lead
times [5]. This also means that outliers occur more frequently than expected. The
reasons of this ensemble feature include the immense complication of the natural
system in comparison with the finite dimensional model (inducing the presence of
model errors) and the finite number of ensemble members. It requires corrections
either by modifying the model itself or by performing post-processing of the fore-
casts.

It is common to correct forecasts by the simplest post-processing method, the
bias correction. More generally post-processing (also called Model Output Statis-
tics, MOS) is an approach used for correcting certain aspects of the new forecasts,
based on statistical features of prior comparisons between model outputs and ob-
servations. The most widespread approach applies ordinary least-squares regression
(LMOS) to relate observations and model predictions, thereby assuming the sole
presence of errors in the observations [1]. As the bias correction method, LMOS
corrects the mean but it tends to degrade the variability, especially at long lead times.
This depletion of the ensemble variance is related to the progressive decorrelation of
the forecast, associated with the chaotic nature of its dynamics. As a consequence,
when applying LMOS on each member of an ensemble forecast, all members will
be mapped to a constant value for long lead times.

Different authors proposed an approach based on linear regression that introduces
ensemble and climatological reliability [2, 4]. We outline a general framework based
on maximum likelihood estimation and Lagrange multipliers for imposing an arbi-
trary number of constraints and generalize their set-up for use with arbitrarily many
predictors. Moreover we discuss how to use the ensemble spread for estimating the
error variances in order to avoid overcorrection of ensembles with large spreads.

45.2 Notation

Consider the meteorological variable X for which we have N observations
(X0.15--.,X0.n). Corresponding to each observation n, the m-th member of our
ensemble forecast produces values (Vl”;, e V}’?n) for the P different meteorolog-
ical variables or predictors. The first predictor V; is the one corresponding to the
variable X. We also define the ensemble mean values as (\_/1 Ry onns \_/p,,).
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Given a training set of observations and corresponding predictors, we want to im-
prove the bare uncorrected forecast V| by using all model predictors. More specif-
ically for each member m of an ensemble n we construct a corrected forecast or
predictand:
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where we defined the deviation from the ensemble mean €;' = V|7 — V. This rela-
tion implies that a bias correction is realized using «, the ensemble mean variability
is corrected by adjusting the 8’s and the ensemble spread by adjusting y .

45.3 Constrained Maximum Likelihood Estimation

Basic climatological constraints for forecasts are the equality of mean and variance
of the corrected forecast with the mean and variance of the observations. Note that
even for perfect model output the associated variance may differ from the variance
of the observations due to the presence of measurement errors and representativity
errors. The constraint for climatological reliability (CR) is:
ot =0p,

where aé is the variance of the corrected forecast and aé the variance of the obser-
vations.

A reliable forecast is characterized by the fact that the observation may be con-
sidered as a member of the ensemble forecast and hence has the same statistical
properties. Defining the error variance of the ensemble n as 02 .» this implies that
the quadratic error divided by 03 ., 1s equal to one, once averaged over all observa-
tions and forecasts. The condition for ensemble reliability (ER) is therefore:
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(45.2)
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A mathematical tool for introducing the ER and CR constraints is by introducing

a constrained likelihood. Assuming the errors on the ensemble mean of the corrected

forecast are normally distributed with mean zero and variance 062’ > the constrained
log-likelihood becomes:
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Upon maximization of this functional with respect to the different parameters we
obtain the maximum likelihood estimate (MLE). The ER forecast is obtained by
setting A = 0, the CR forecast by setting © = 0, the unconstrained MLE forecast by
assuming A = u = 0 while the ER+CR assumes both to be nonzero.
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45.3.1 Discussion

The error variance 63 ,, of an ensemble 7 is assumed to be given, but has to be speci-
fied. We adopt two approaches: a variable and a constant error variance. We start by
assuming a constant error variance in the sense that it is independent on n and the
obvious choice is the average ensemble variance. Equation (45.2) then simply states
that the mean square error of the ensemble mean equals the average ensemble vari-
ance [5]. We find that the CR forecast is equivalent to Errors-in-Variables MOS or
EVMOS [7-9] which appropriately takes into account the presence of errors in both
the forecasts and the observations.! Enforcing only ER and using a constant error
variance we find that the CR constraint is automatically satisfied as shown before
by different authors for the case of one predictor [2, 4].

For a skillful ensemble forecast, the magnitude of the error, which is the squared
difference between ensemble mean and the observation, may be estimated by the
ensemble variance. Therefore, for an inhomogeneous chaotic system there is a de-
pendence of the error variance ozn on the ensemble 7 itself. Applying in that case

€,
the unconstrained MLE, we find that the ER constraint is automatically satisfied.

45.4 Verification

We test the usefulness of the calibration methods in the context of the well-known
Lorenz 63 model by focussing on ensemble scores at short lead times. The sys-
tem describes thermal convection and involves three coupled first-order differential
equations in time for the variables x, y and z:

x=0(—x+Yy),

y=rx—y-—xz,
z=xy — bz.

We adopt the conventional parameter choice (o, r, b) = (10, 28, 8/3) such that the
system exhibits chaotic behavior. For generating the observations we assume a
slightly biased parameter r’ = r +0.001 from the one used for generating the model
data. The system is perfectly reliable at time zero in the sense that the observation
is randomly sampled from the forecast ensemble. Our training and verification sets
include 50.000 ensembles of each 51 members.

45.4.1 Ensemble Forecast Skill

Figure 45.1(a) shows the average continuous ranked probability skill score (CRPSS)
of the different forecasts for the z-variable against lead time. The CRPS score is the

UIn fact, it is equivalent to EVMOS applied on the ensemble mean.
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Fig. 45.1 (a) CRPS skill scores for different corrected forecasts applied on the z-variable as a
function of the lead time. (b) Rank histogram as a function of the 52 ranks for different corrected
forecasts applied on the y-variable. Both plots are generated using the Lorenz 63 model with a
model error and averaged over 50.000 ensemble forecasts with 51 ensemble members each

integrated squared difference between the cumulative distribution functions of the
ensemble forecast and the observation [10]. The CRPS skill score of a forecast is
then equal to CRPSS = 1 — CRPS/CRPS, where CRPS,, is the value associated
with the uncorrected forecast. We distinguish between corrections produced assum-
ing a constant error variance (full lines) and a variable one (dashed lines). For a
forecast worse (better) than the uncorrected forecast, the CRPSS is negative (posi-
tive) while a perfect forecast has a CRPSS value equal to one. The bias correction
(black line) gives rise to the smallest correction while the unconstrained MLE (yel-
low line) and the CR forecast (red line) improve the forecast but degrade its quality
after some time. The ER+CR forecast (blue full line) and all the approaches using
a variable error variance (dashed lines) are consistently better. By far the best ap-
proach is the ER+CR approach (green full line) with constant error variances but
using four predictors as opposed to one.

45.4.2 Calibration

Figure 45.1(b) evaluates the calibration as expressed by the rank or Talagrand dia-
gram for the different forecasts for the y-variable integrated over lead times between
zero and one.

The rank histogram shows the frequency with which the observation lies at a
specific place in the set of ranked ensemble forecasts. Ideally the rank histogram is
a straight line at the value one such that the observation can be viewed as a mem-
ber of the ensemble. Departure from uniformity may, among others, indicate over-
dispersion or under-dispersion of the ensemble forecast. It is clearly seen that the
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bias-corrected forecast, the CR forecast and the unconstrained MLE forecast (all
with a constant error variances) are badly calibrated. The ER4+CR forecast with
constant error variances performs better but still includes many outliers. These out-
liers can be attributed to ensembles with small spreads. The best calibrated forecasts
are the ones using a variable error variance since these approaches correct small en-
sembles as well as large ensembles.

45.5 Conclusions

In summary, we introduced a post-processing technique based on linear regression
enforcing the forecast to become climatologically reliable (CR) and/or to have reli-
able ensembles (ER). We have tested our methods using a low-order chaotic system
with model error. For short lead times our constrained approaches are superior to
the uncorrected forecast, the bias-corrected forecast and the forecast obtained by an
unconstrained maximum likelihood estimation. Moreover the use of the ensemble
spread for estimating the error variance of the ensemble mean leads to a better cal-
ibration and avoids the undercorrection of ensembles with small spreads. Note also
that, as opposed to most statistical post-processing techniques, our new approaches
are computationally cheap.
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