

Part 1:
Sustainable production and consumption patterns

FINAL REPORT

GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis

Appendix 1: Equations

CP/51

Université Libre de Bruxelles, DULBEA
Université Catholique de Louvain, CORE
ECONOTEC

Coordinator
Prof. Ali Bayar
Université Libre de Bruxelles
DULBEA - CP140
50 Avenue F. Roosevelt
B-1050 Bruxelles

Tel: + 3226504115
Fax: + 3226504137
Ali.Bayar@ulb.ac.be

May 2006

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

6.2. Equations

Firms:

$$
\begin{align*}
& \text { NRES }_{a g r, r}=a N R E S_{a g r, r} \cdot\left(X D m_{a g r, r}+\sum_{v} X D v_{a g r, v, r}\right) \tag{6.2.1}\\
& a K L E m_{s c, r} \cdot X D m_{s c, r}=K L E m_{s c, r} \tag{6.2.2}\\
& K E m_{s c, r}=K L E m_{s c, r} \cdot\left(T F P_{s c, r} \cdot a P m 1_{s c, r}\right)^{\left(\sigma P m l_{s c, r}-1\right)} \cdot \gamma P m 11_{s c, r}^{\sigma P m l_{s c, r}} . \tag{6.2.3}\\
& \left(P K L E m_{s c, r} / P K E m_{s c, r}\right)^{\sigma P m m_{s c, r}}
\end{align*}
$$

$$
\begin{align*}
& L m_{s c, r}=K L E m_{s c, r} \cdot\left(T F P_{s c, r} \cdot a P m l_{s c, r}\right)^{\left(\sigma P m l_{s c, r}-1\right)} \cdot \gamma P m 12_{s c, r}^{\sigma P m l_{s c r}} . \\
& {\left[P K L E m_{s c, r} /\left(\left(1+t l_{s c, r}\right) \cdot P L_{s c, r}\right)\right]^{\sigma P m_{s c, r}}-K L E m_{s c, r} .} \\
& \left(T F P_{s c, r} \cdot a P m 1_{s c, r}\right)^{\left(\sigma P m m_{s c,}-1\right)} \cdot \gamma P m 12_{s c, r}^{\sigma P m l_{s e r}} . \tag{6.2.4}\\
& {\left[P K L E m_{s c, r} /\left(\left(1+t l_{s c, r}\right) \cdot P L_{s c, r}\right)\right]^{\sigma P m l_{s c r}} .} \\
& \left(f c L m Z_{s c, r} \cdot N F Z_{s c, r} / L m Z_{s c i m p f, r}\right)+N F_{s c, r} \cdot f c L m_{s c, r}
\end{align*}
$$

$$
\begin{align*}
& {\left[P K E m_{\text {scnel }, r} /\left(\left(1+t k f_{\text {scnel }, r} \cdot M U F+t k_{\text {scnel }, r}\right) \cdot R K m_{\text {scnel }, r}+d_{\text {scnel }, r} \cdot P I\right)\right]^{\sigma P m m_{\text {scel }, r}}} \tag{6.2.5}\\
& K S K m_{\text {sel, }, r}=\text { KEm }_{\text {sel, }, r} \cdot a P m 2_{\text {sel, },}^{\left(\sigma m_{\text {sel }}-1\right)} \cdot \gamma P m 21_{\text {sel }, r}^{\sigma_{\text {sel }}, r} . \tag{6.2.6}\\
& {\left[P K E m_{\text {sel, },} /\left(\left(1+t k f_{\text {sel }, r} \cdot M U F+t k_{\text {sel }, r}\right) \cdot R K e_{r}+d_{\text {sel, }} \cdot P I\right)\right]^{\sigma P m 2_{s e l, r}}} \\
& E N E R m_{s c, r}=\operatorname{KEm}_{s c, r} \cdot a P m 2_{s c, r}^{\left(\sigma P m_{s c, r}-1\right)} \cdot \gamma P m 22_{s c, r}^{\sigma P m_{s c r}} \cdot\left(P K E m_{s c, r} / P E N m_{s c, r}\right)^{\sigma P m 2_{s c, r}} \tag{6.2.7}
\end{align*}
$$

ENEROGm $m_{\text {scnl }, r}=E N E R m_{\text {scnl }, r} \cdot\left(a \operatorname{Pm} 3_{\text {scnl }, r} \cdot \operatorname{ProdEN} N_{\text {scnl }, r}\right)^{\left(\sigma P m 3_{\text {scll },-r}-1\right)}$
$\cdot \gamma \operatorname{Pm} 31_{\text {scnl }, r}^{\sigma \mathrm{sm} 3_{l}, r} \cdot\left(\text { PENm }_{\text {scll }, r} / \text { PEOGm }_{\text {scnl }, r}\right)^{\sigma P m 3_{\text {scll }, r}}$
$E N E R O G m_{s c l, r}=a$ Pm3nel $_{s c l, r} \cdot \operatorname{ProdEN}_{s c l, r} \cdot E N E R m_{s c l, r}$

$\cdot\left(1+\right.$ vatio $\left.\left.\left._{e l, \text { scsl } l, r}\right) \cdot P_{e l, r}\right)\right)^{\sigma P m 3_{s c n l, r}}$
$E N I N P m_{e l, s c l, r}=a P m 3_{s c l, r} \cdot \operatorname{ProdEN}_{s c l, r} \cdot E N E R m_{s c l, r}$

ENINPm $_{\text {enl }, s c, r}=$ ENEROGm $_{s c, r} \cdot a P m 4_{s c, r}^{\left(\sigma P m 4_{s, c},-1\right)} \cdot \gamma P m 4_{\text {enl,sc,r }}^{\sigma P m_{s, r}}$.
$\left[\text { PEOGm }_{s c, r} /\left(\left(1-\text { tscio }_{\text {enl,sc,r}}-\text { tsciof }_{\text {enl,sc,r }}\right) \cdot\left(1+\text { vatio }_{e n l, s c, r}\right) \cdot P_{e n l, r}\right)\right]^{\sigma P m 4_{s e r}, r}$
$a L m 1_{s l, r} \cdot X D m_{s l, r}=K L m_{s l, r}$
$a L m 2_{e n, s l, r} \cdot \operatorname{ProdEN} N_{s l, r} \cdot X D m_{s l, r}=\operatorname{ENINPm}_{e n, s l, r}$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

$$
\begin{equation*}
a L m 1_{s l, r}=a L m T_{s l, r}-\sum_{e n} a L m 2_{e n, s l, r} \cdot \operatorname{Prod} E N_{s l, r}-\sum_{n e n} i o_{n e n, s l, r} \tag{6.2.15}
\end{equation*}
$$

$L m_{s l, r}=K L m_{s l, r} \cdot\left(T F P_{s l, r} \cdot a L m 3_{s l, r}\right)^{\left(\sigma L m l_{l, r}-1\right)} \cdot \gamma L m 12_{s l, r}^{\sigma L m m_{s l, r}}$.
$\left[P K L m_{s l, r} /\left(\left(1+t l_{s l, r}\right) \cdot P L_{s l, r}\right)\right]^{\sigma L m l_{l, r}}-$
$K L m_{s l, r} \cdot\left(T F P_{s l, r} \cdot a L m 3_{s l, r}\right)^{\left(\sigma L m l_{l, r}-1\right)} \cdot \gamma L m 12_{s l, r}^{\sigma L m l_{s, r}}$.
$\left[P K L m_{s l, r} /\left(\left(1+t l_{s l, r}\right) \cdot P L_{s l, r}\right)\right]^{\sigma L m l_{l, r}}$.
$\left(f c L m Z_{s l, r} \cdot N F Z_{s l, r} / L m Z_{s l, r}\right)+N F_{s l, r} \cdot f c L m_{s l, r}$

$\left[P K L m_{\text {slnng }, r} /\left(\left(1+t k f_{s l n n g, r} \cdot M U F+t k_{s l n n g, r}\right) \cdot R K m_{\text {slnng }, r}+d_{s l n n g, r} \cdot P I\right)\right]^{\sigma L m_{\text {slnng }},}$
$K S K m_{s n g, r}=K L m_{s n g, r} \cdot\left(T F P_{s n g, r} \cdot a L m 3_{s n g, r}\right)^{\left(\sigma L m l_{s n g}, r\right.} r^{-1)} \cdot \gamma L m 1 l_{s n g, r}^{\sigma L m l_{n g}, r}$.
$\left[P K L m_{s n g, r} /\left(\left(1+t k f_{s n g, r} \cdot M U F+t k_{s n g, r}\right) \cdot R K n g_{r}+d_{s n g, r} \cdot P I\right)\right]^{\sigma L m m_{\operatorname{mg}, r}}$
$a K L E v_{s c, v, r} \cdot X D v_{s c, v, r}=K L E v_{s c, v, r}$
$K E v_{s c, v, r}=K L E v_{s c, v, r} \cdot a P v 1_{s c, v, r}^{\left(\sigma P l_{s c, r}-1\right)} \cdot \gamma P v 1 l_{s c, v, r}^{\sigma P l_{s c, v, r}} \cdot\left(P K L E v_{s c, v, r} / P K E v_{s c, v, r}\right)^{\sigma P v l_{s c, v, r}}$
$L v_{s c, v, r}=K L E v_{s c, v, r} \cdot a P v l_{s c, v, v}^{\left(\sigma P l_{s c, v, g}-1\right)} \cdot \gamma P v 12_{s c, v, r}^{\sigma P v_{s c v r}} \cdot\left[P K L E v_{s c, v, r} /\left(\left(1+t l_{s c, r}\right) \cdot P L_{s c, r}\right)\right]^{\sigma P v_{s c, v r}}-$
$K L E v_{s c, v, r} \cdot a P \nu l_{s c, v, r}^{\left(\sigma P v_{l, v, v}-1\right)} \cdot \gamma P v 12_{s c, v, r}^{\sigma v_{s, v, r}} \cdot\left[P K L E v_{s c, v, r} /\left(\left(1+t l_{s c, r}\right) \cdot P L_{s c, r}\right)\right]^{\sigma P v_{s c c, v r}}$.
$\left(f c L v Z_{s c, v, r} \cdot N F Z_{s c, r} / L v Z_{s c, v, r}\right)+N F_{s c, r} \cdot f c L v_{s c, v, r}$
$K S K v_{s c, v, r}=K E v_{s c, v, r} \cdot a P v 2_{s c, v, r}^{\left(\sigma P v_{s c, v, r}-1\right)} \cdot \gamma P v 21_{s c, v, r}^{\sigma P v_{2 s v r}}$.
$\left[P K E v_{s c, v, r} /\left(\left(1+t k f_{s c, r} \cdot M U F+t k_{s c, r}\right) \cdot R K v_{s c, v, r}+d_{s c, r} \cdot P I\right)\right]^{\sigma P v_{s c, v, r}}$
$E N E R v_{s c, v, r}=K E v_{s c, v, r} \cdot a P v 2_{s c, v, r}^{\left(\sigma P v_{s c, v, r}-1\right)} \cdot \gamma P v 22_{s c, v, r}^{\sigma P v v_{s c v, r}}$.
$\left(P K E v_{s c, v, r} / P E N v_{s c, v, r}\right)^{\sigma P v_{s c, v, r}}$
$E N E R O G v_{s c n l v, r}=E N E R v_{s c n l, v, r} \cdot a P v 3_{s c n l, v, r}^{\left(\sigma P v 3_{\text {sch } l v, r}-1\right)} \cdot \gamma P v 31_{s c n l, v, r}^{\sigma P v 3_{\text {sch }, v r}}$.

$E N E R O G v_{s c l, v, r}=a P v 3 n e l_{s c l, v, r} \cdot E N E R v_{s c l, v, r}$

$\left[P E N v_{s c n l, v, r} /\left(\left(1-\text { tscio }_{e l, s c n l, r}-\text { tsciof }_{e l, s c n l, r}\right) \cdot\left(1+\text { vatio }_{e l, s c n l, r}\right) \cdot P_{e l, r}\right)\right]^{\sigma P v 3_{s c n l, v r}}$
$E N I N P v_{e l, s c l, v, r}=a P v 3_{s c l, v, r} \cdot E N E R v_{s c l, v, r}$
$E N I N P v_{e n l, s c, v, r}=E N E R O G v_{s c, v, r} \cdot a P v 4_{s c, v, r}^{\left(\sigma P v_{s c, v r}-1\right)} \cdot \gamma P v 4_{e n l, s c, v, r}^{\sigma P 4_{s v, r}}$.
$\left[P E O G v_{s c, v, r} /\left(\left(1-\text { tscio }_{\text {enl }, s c, r}-\text { tsciof }_{\text {enl }, s c, r}\right) \cdot\left(1+\text { vatio }_{\text {enl }, s c, r}\right) \cdot P_{\text {enl }, r}\right)\right]^{\sigma P_{44_{s, v, r}}}$
$a L v 1_{s l, v, r} \cdot X D v_{s l, v, r}=K L v_{s l, v, r}$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

$$
\begin{align*}
& a L v 2_{e n, s l, v, r} \cdot X D v_{s l, v, r}=E N I N P v_{e n, s l, v, r} \tag{6.2.30}\\
& L v_{s l, v, r}=K L v_{s l, v, r} \cdot a L v 3_{s l, v, r}^{\left(\sigma L l_{l, v, r}-l\right)} \cdot \gamma L v 12_{s l, v, r}^{\sigma L l_{l, v r}} . \\
& {\left[P K L v_{s l, v, r} /\left(\left(1+t l_{s l, r}\right) \cdot P L_{s l, r}\right)\right]^{\sigma L v_{l d, r, r}}-} \\
& K L v_{s l v, r} \cdot a L v 3_{s l, v, r}^{\left(\sigma L l_{l l, v}-1\right)} \cdot \gamma L v 12_{s l v, r}^{\sigma L \nu l_{l, v}} . \\
& {\left[P K L v_{s l, v, r} /\left(\left(1+t l_{s l, r}\right) \cdot P L_{s l, r}\right)\right]^{\sigma L \nu l_{s, v r}} .} \\
& \left(f c L v Z_{s l, v, r} \cdot N F Z_{s l, r} / L v Z_{s l, v, r}\right)+N F_{s l, r} \cdot f c L v_{s l, v, r} \\
& K S K v_{s l v, r}=K L v_{s l v, r} \cdot a L v 3_{s l, v, r}^{\left(\sigma L v_{l, v, r}-1\right)} \cdot \gamma L v 1 l_{s l, v, r}^{\sigma L l_{l, v, r}} . \\
& {\left[P K L v_{s l, v, r} /\left(\left(1+t k f_{s l, r} \cdot M U F+t k_{s l, r}\right) \cdot R K v_{s l, v, r}+d_{s l, r} \cdot P I\right)\right]^{\sigma L v_{l l, v r}}} \\
& K L m_{b k n g, r}=a L m l_{b k n g, r} \cdot \text { markup } K_{b k n g, r} \cdot X D m_{b k n g, r} \\
& E N I N P m_{c o, b k n g, r}=a L m 2_{\text {co,bkng }, r} \cdot \text { markupBK }_{\text {bkng }, r} \cdot X D m_{\text {bkng }, r} \tag{6.2.34}\\
& \text { KSKm }_{\text {bkng }, r}=K L m_{\text {blkg }, r} \cdot \gamma B K n g 2_{r}^{\sigma B K n g_{r}} . \\
& {\left[P K L m_{b k n g, r} /\left(\left(1+t k f_{b k n g, r} \cdot M U F+t k_{b k n g, r}\right) \cdot R K n g_{r}+d_{b k n g, r} \cdot P I\right)\right]^{\sigma B K n g_{r}}} \\
& L m_{\text {bkng }, r}=K L m_{\text {blkg }, r} \cdot \gamma B K n g I_{r}^{\sigma^{B K n g_{r}}} \cdot\left[P K L m_{\text {bkng }, r} /\left(\left(1+t l_{\text {bkng }, r}\right) \cdot P L_{\text {bkng }, r}\right)\right]^{\sigma B K n g_{r}} \\
& \text { NRES }_{\text {bkel, },} \cdot\left(\text { PNRES }_{r} \cdot \text { markupBK }_{\text {bkel }, r}\right)^{\sigma B K e l l_{\text {bkel }, r}}=X D m E L_{\text {bkel }, r} . \\
& \left(\sum_{e l} P_{e l, r}\right)^{\sigma B K e l l_{b k e, r}, r} \cdot \gamma B K e l 11_{b \text { bel }, r}^{\sigma B K l_{b l e l}, r} \\
& F K L O_{b k e l, r} \cdot P F K L O_{b k e l, r}^{\sigma B K e l_{b k l, l}}=X D m E L_{b k e l, r} \cdot\left(\sum_{e l} P_{e l, r}\right)^{\sigma B K e l l_{\text {belel }, ~}} \cdot \gamma B K e l 12_{b k e l, r}^{\sigma B K e l l_{b k e l, r}} \tag{6.2.38}\\
& F F_{b k e l, r} \cdot\left(P F F_{r} \cdot \text { markup }^{2} K_{b k e l, r}\right)^{\sigma B K e l} l_{\text {bele }, r}=F K L O_{b k e l, r} \cdot P F K L O_{b k e l, r}^{\sigma B K e l_{\text {blel }, r}} \cdot \gamma B K e l 21_{b k e l, r}^{\sigma K e l} 2_{\text {bbel }, r} \tag{6.2.39}
\end{align*}
$$

$K L m_{\text {bel }, r}=a L m I_{\text {bkel, },} \cdot$ markup $B K_{\text {bkel }, r} \cdot K L O_{\text {bkel }, r}$
$K S K m_{b k e l, r}=\operatorname{KLm}_{\text {bkel, }, r} \cdot\left[P K L m_{\text {bkel, }, r} /\left(\right.\right.$ RKel $_{r} \cdot\left(1+t k f_{\text {bkel, }, r} \cdot M U F+t k_{\text {bkel, },}\right)+$
$\left.\left.P I \cdot d_{b k e l, r}\right)\right]^{\sigma B K e l l_{b l e l, r}} \cdot \gamma$ BKel3 $I_{\text {bkel }, r}^{\sigma B K e l_{b l e l, r}}$
$L m_{b k e l, r}=K L m_{b k e l, r} \cdot\left[P K L m_{b k e l, r} /\left(\left(1+t l_{b k e l, r}\right) \cdot P L_{b k e l, r}\right)\right]^{\sigma B K e l 3_{\text {bled, }, r}} \cdot \gamma B K e l 32_{b_{b k e l, r}}^{\sigma B K 3_{\text {blel }, r}}$
$X D v_{s, v, r}=X D r i g_{s, r} \cdot a O 2_{s, r}^{\left(\sigma 2_{s, r}-l\right)} \cdot \gamma O 2_{s, v, r}^{\sigma O 2_{s, r}} \cdot\left(P D r i g_{s, r} / P D v_{s, v, r}\right)^{\sigma 02_{s, r}}$
XDrig $_{s, r}=\left(X D_{s, r}-\operatorname{CSEARCH}_{s, r} / P D_{s, r}\right) \cdot a O l_{s, r}^{\left(\sigma O I_{s, r}-l\right)} \cdot \gamma O 12_{s, r}^{\sigma O I_{s, r}}$
$\cdot\left(P_{s, r} / \text { PDrig }_{s, r}\right)^{\sigma O I_{s, r}}$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »
$X D m_{s, r}=\left(X D_{s, r}-\right.$ CSEARCH $\left._{s, r} / P D_{s, r}\right) \cdot a O I_{s, r}^{\left(\sigma O I_{s, r}-1\right)} \cdot \gamma O 11_{s, r}^{\sigma O I_{s, r}}$
$\cdot\left(P D_{s, r} / P D m a_{s, r}\right)^{\sigma O I_{s, r}}$
$S F_{r}=\left(1-\sum_{d}\right.$ aich $\left._{d, r}\right) \cdot\left(\sum_{\text {scnel }} K S K m_{\text {scnel }, r} \cdot R K m_{\text {scnel }, r}+\sum_{\text {slnng }} K S K m_{\text {slnng }, r} \cdot R K m_{\text {slinng }, r}+\right.$
$\left.\sum_{s e l} K S K m_{s e l, r} \cdot R K e l_{r}+\sum_{s n g} K S K m_{s n g, r} \cdot R K n g_{r}+\sum_{s, v} K S K v_{s, v, r} \cdot R K v_{s, v, r}\right)-$
$T R F G F_{r} \cdot I N D E X_{r}-$ TRHF $_{r} \cdot I N D E X_{r}+\sum_{\text {bkng }} K_{\text {l }} K_{\text {bkng }, r} \cdot R K n g_{r}+\sum_{\text {bkel }} K S K_{\text {bkel, },} \cdot$ RKel $_{r}$

MCOSTS $_{s, r} \cdot\left(X D_{s, r}-\right.$ CSEARCH $\left._{s, r} / P D_{s, r}\right) \cdot\left(1-t p_{s, r}-t p f_{s, r}+t s p_{s, r}+\right.$
$\left.t s p f_{s, r}\right)=\left[\left(X D_{s, r} \cdot P D_{s, r}-\right.\right.$ CSEARCH $\left._{s, r}\right) \cdot\left(1-t p_{s, r}-t p f_{s, r}+t s p_{s, r}+\right.$
$\left.\left.t s p f_{s, r}\right)-\left(f c L_{s, r}+f c K_{s, r}\right) \cdot N F_{s, r} \cdot G D P D E F\right]$

MCOSTS $_{b k n g, r}=\sum_{n g} P_{n g, r} \cdot\left(\varepsilon \operatorname{Reg} B_{b k n g, r} \cdot N F_{b k n g, r}-1\right) /\left(\operatorname{elas} \operatorname{Re} g B_{b k n g, r} \cdot N F_{b k n g, r}\right)$
$\operatorname{MCOSTS}_{b k e l, r}=\sum_{e l} P_{e l, r} \cdot\left(\varepsilon \operatorname{Reg} B_{b k e l, r} \cdot N F_{b k e l, r}-1\right) /\left(\right.$ elas Reg $\left.g B_{b k e l, r} \cdot N F_{b k e l, r}\right)$
$N F_{s, r}=$ PROFITS $_{s, r} /\left[\left(f c L_{s, r}+f c K_{s, r}\right) \cdot G D P D E F\right]$
$N F_{\text {bkng }, r}=\left(\right.$ PROFITS $_{b k n g, r}+\sum_{\text {sng }}$ PROFITSDZ $\left._{\text {sng }, r} \cdot G D P D E F\right) /$
$\left[\left(f c L m_{b k n g, r}+f c K_{b k n g, r}\right) \cdot G D P D E F\right]$
$N F_{b k e l, r}=\left(\right.$ PROFITS $_{\text {bkel }, r}+\sum_{\text {sel }}$ PROFITSDZ $\left._{\text {sel }, r} \cdot G D P D E F\right) /$
$\left[\left(f_{c} L m_{\text {bkel }, r}+f_{c} K_{\text {bkel, }, r}\right) \cdot G D P D E F\right]$

PROFITS $_{\text {solig,r }}=\sum_{c}\left[\left(X D D_{\text {solig, }, r}+E M_{\text {solig } c, r, r r}+E M_{\text {solig. }, r, r r r}\right) \cdot\right.$ MCOSTS $_{\text {solig,r }} /$
$\left(\right.$ elasReg $\left.\left._{\text {solig }, \text {, }} \cdot N F_{\text {solig }, r}-1\right)\right]$

PROFITS $_{\text {bkng }, r}=X D m_{\text {bkng }, r} \cdot$ MCOSTS $_{\text {bkng }, r} /\left(\right.$ elas Re $g B_{b k n g ~}$, $\left.\cdot N F_{\text {bkng }, r}-1\right)$

PROFITS $_{b k e l, r}=X D m E L_{b k e l, r} \cdot$ MCOSTS $_{b k e l, r} /\left(\right.$ elas Re $\left.g B_{b k e l, r} \cdot N F_{b k e l, r}-1\right)$

PROFITS $_{\text {smon }, r}=\sum_{c}\left[\left(X D D_{\text {smon, }, \text {, } r}+E M_{\text {smon }, \text {, }, r, r r}+E M_{\text {smon }, \text {, }, r, r r r}\right)\right.$.
MCOSTS $_{\text {smon }, r} /$ elasReg $_{\text {smon }, \text {, }, r}$]
$\operatorname{MARKUP}_{s, c, r}=\left(P D D_{s, c, r}-\operatorname{MCOSTS}_{s, r}\right) /$ MCOSTS $_{s, r}$

MARKUPB $_{b k n g, r} \cdot$ MCOSTS $_{b k n g, r}=\sum_{n g} P_{n g, r}-$ MCOSTS $_{b k n g, r}$
MARKUPB $_{b k e l, r} \cdot$ MCOSTS $_{b k e l, r}=\sum_{e l} P_{e l, r}-$ MCOSTS $_{b k e l, r}$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »
$\operatorname{ENEFF}_{s, w}=\left[\left(\sum_{e n l} \operatorname{ENINP}_{e n l s, w}+2 \cdot \sum_{e l} \operatorname{ENINP}_{e l s, s, w}\right) /\left(X_{s, w}-\right.\right.$ CSEARCH $\left.\left._{s, w} / P D_{s, w}\right)\right] /$ $\left[\left(\sum_{e n l} E N I N P Z_{e n l s, w}+2 \cdot \sum_{e l} E N I N P Z_{e l s, w}\right) /\left(X D Z_{s, w}-\operatorname{CSEARCHZ}_{s, w} / P D Z_{s, w}\right)\right]$
$\operatorname{ENEFF}_{s, f}=\left[\left(\sum_{e n l} E N I N P_{e n l s, f}+2 \cdot \sum_{e l} E N I N P_{e l, s, f}\right) /\left(X_{s, f}-\right.\right.$ CSEARCH $\left.\left._{s, f} / P D_{s, f}\right)\right] /$ $\left[\left(\sum_{e n l} E N I N P Z_{\text {enl } s, s}+2 \cdot \sum_{e l} E N I N P Z_{e l s, f}\right) /\left(X D Z_{s, f}-\operatorname{CSEARCHZ}_{s, f} / P D Z_{s, f}\right)\right]$

Households:

$$
\begin{align*}
& \left(1-t s s_{c, d, r}-t s f_{c, d, r}\right) \cdot\left(1+t c f_{c, d,}\right) \cdot\left(1+v a t_{c, d, r}+t c_{c, d, r}\right) \cdot P_{c, r} \cdot C_{c, d, r}= \\
& \left(1-t s c_{c, d, r}-t s c c_{c, d, r}\right) \cdot\left(1+t c f_{c, d, r}\right) \cdot\left(1+v a t_{c, d, r}+t c_{c, d, r}\right) \cdot P_{c, r} \cdot \mu H_{c, d, r}+ \\
& \alpha H_{c, d, r} \cdot\left\{C B U D_{d, r}-\sum_{c c}\left[\mu H_{c c, d, r} \cdot\left(1-t s c_{c, d, r}-t s c f_{c, d, r}\right) \cdot\left(1+t c f_{c c, d, r}\right) .\right.\right. \tag{6.2.63}\\
& \left.\left.\left(1+v a t_{c c, d, r}+t c_{c, d, d, g}\right) \cdot P_{c c, r}\right]\right\}
\end{align*}
$$

$$
\left(1-t y_{d, r}-t y f_{d, r} \cdot M U\right) \cdot P W_{r} \cdot C L E S_{d, r}=\left(1-t y_{d, r}-t y f_{d, r} \cdot M U\right) \cdot P W_{r} \cdot \mu H L E S_{d, r}+
$$

$$
\begin{equation*}
\alpha H L E S_{d, r} /\left(1-\alpha H L E S_{d, r}\right) \cdot\left\{C B U D_{d, r}-\sum_{c}\left[\mu H_{c, d, r} \cdot\left(1-t s s_{c, d, r}-t s c f_{c, d r}\right) .\right.\right. \tag{6.2.64}
\end{equation*}
$$

$\left.\left.\left(1+t c f_{c, d, r}\right) \cdot\left(1+v a t_{c, d, r}+t c_{c, d, r}\right) \cdot P_{c, r}\right]\right\}$
$L_{S R D_{d, r}}=T S D_{d, r}-$ CLES $_{d, r}$
$L S R_{r}=\sum_{d} L S R D_{d, r}$
$Y H_{d, w}=$ aich $_{d, w} \cdot\left[\sum_{\text {scenel }} K S K m_{\text {screl }, w} \cdot R K m_{\text {scnel }, w}+\sum_{\text {sel }} K S K m_{\text {sel, }, w} \cdot R K e l_{w}+\right.$
$\left.\sum_{s l n n g} K S K m_{s l n n g, w} \cdot R K m_{s l n n g, w}+\sum_{s n g} K S K m_{s v g, w} \cdot R K n g_{w}+\sum_{s, v} K S K v_{s, v, w} \cdot R K v_{s, v, w}\right]+$
\sum_{r} ailh $_{d, r, w} \cdot\left[\sum_{s b k} L m_{s b k, w} \cdot P L_{s b k, w}+\sum_{s, v} L v_{s, v, w} \cdot P L_{s, w}\right]+s h W B x D_{d} \cdot\left[\sum_{s b k} L m_{s b k, b} \cdot P L_{s b k b, b}+\right.$
$\left.\sum_{s, v} L v_{s, v, b} \cdot P L_{s, b}\right]+s h W F I D_{d} \cdot\left[\sum_{s b k} L m_{s b k, f} \cdot P L_{s b k, f}+\sum_{s, v} L v_{s, v, f} \cdot P L_{s, f}\right]+$
shldec $_{d, w} \cdot L W_{w} \cdot P L W Z \cdot E R+T R H G_{d, w} \cdot$ INDEX $_{w}+$ TRHFG $_{d, w}+$ TRHF $_{d, w} \cdot$ INDEX $_{w}+$
aichl $_{d, w} \cdot\left(\right.$ PNRES $_{w} \cdot \sum_{a g r} N R E S_{a g r, w}+$ PNRES $\left._{w} \cdot \sum_{\text {bkel }} N R E S_{b k e l, w} \cdot \operatorname{markupBK}_{a g r, w}\right)+$
aichl $_{d, w} \cdot P F F_{w} \cdot \sum_{\text {bkel }} F F_{b \text { bel, }, w} \cdot \operatorname{markupBK}_{\text {bkel }, w}$
$Y H_{d, f}=$ aich $_{d, f} \cdot\left[\sum_{\text {scenel }} K S K m_{\text {senel }, f} \cdot R K m_{\text {scene }, f}+\sum_{\text {sel }} K S K m_{\text {sel }, f} \cdot R K e l_{f}+\right.$
$\left.\sum_{s l n n g} K S K m_{s l n n g, f} \cdot R K m_{s l n n g, f}+\sum_{s n g} K S K m_{s v g}, f \cdot R K n g_{f}+\sum_{s, v} K S K v_{s, v, f} \cdot R K v_{s, v, f}\right]+$
\sum_{r} ailh $_{d, r, f} \cdot\left[\sum_{s b k} L m_{s b k, f} \cdot P L_{s b k, f}+\sum_{s, v} L v_{s, v, f} \cdot P L_{s, f}\right]+s h F l B x D_{d} \cdot\left[\sum_{s b k} L m_{s b k, b} \cdot P L_{s b k, b}+\right.$
$\left.\sum_{s, v} L v_{s, v, b} \cdot P L_{s, b}\right]-s h W F I D_{d} \cdot\left[\sum_{s b k} L_{s b k, f} \cdot P L_{s b k, f}+\sum_{s, v} L v_{s, v, f} \cdot P L_{s, f}\right]+s h l d e c_{d, f}$.
$L W_{f} \cdot P L W Z \cdot E R+$ TRHG $_{d, f} \cdot$ INDEX $_{f}+$ TRHFG $_{d, f}+$ aichl $_{d, f} \cdot\left(\right.$ PNRES $_{f}$.
$\sum_{a g r}$ NRES $_{\text {agr }, f}+$ PNRES $_{f} \cdot \sum_{\text {blel }}$ NRES $_{\text {bkel, }, f} \cdot$ markupBK $\left._{\text {bkel }, f}\right)+$ aichl $_{d, f} \cdot\left(\right.$ PFF $_{f}$.
$\left.\sum_{b k e l} F F S_{b \text { bel }, f} \cdot \operatorname{markup}^{(1)} K_{b k e l, f}\right)+T R H F_{d, f} \cdot$ INDEX f_{f}

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

$$
\begin{aligned}
& Y H_{d, b}=\text { aich }_{d, b} \cdot\left[\sum_{s c n e l} K S K m_{s c n e l, b} \cdot R K m_{s c n e l, b}+\sum_{s e l} K S K m_{s e l, b} \cdot R K e l_{b}+\right. \\
& \left.\sum_{s l n n g} K S K m_{s l n n g, b} \cdot R K m_{s l n n g, b}+\sum_{s n g} K S K m_{s n g, b} \cdot R K n g_{b}+\sum_{s, v} K S K v_{s, v, b} \cdot R K v_{s, v, b}\right]+ \\
& \sum_{r} \text { ailh } h_{d, r, b} \cdot\left[\sum_{s b k} L_{s b k, b} \cdot P L_{s b k, b}+\sum_{s, v} L v_{s, v, b} \cdot P L_{s, b}\right]-s h W B x D_{d} \cdot\left[\sum_{s b k} L_{s b k, b} \cdot P L_{s b k, b}+\right. \\
& \left.\sum_{s, v} L v_{s, v, b} \cdot P L_{s, b}\right]-s h F l B x D_{d} \cdot\left[\sum_{s b k} L_{s b k, b} \cdot P L_{s b k, b}+\sum_{s, v} L v_{s, v, b} \cdot P L_{s, b}\right]+s h l d e c_{d, b} \cdot \\
& L W_{b} \cdot P L W Z \cdot E R+T R H G_{d, b} \cdot I N D E X_{b}+T R H F G_{d, b}+a i c h l_{d, b} \cdot\left(P N R E S_{b} \cdot\right. \\
& \sum_{a g r} N R E S_{a g r, b}+P N R E S_{b} \cdot \sum_{b k e l} N R E S_{b k e l, b} \cdot{\left.m a r k u p B K_{b k e l, b}\right)+a i c h l_{d, b} \cdot P F F_{b} \cdot}_{\sum_{b k e l} F F S_{b k e l, b} \cdot{m a r k u p B K_{b k e l, b}}+T R H F_{d, b} \cdot I N D E X_{b}}^{S H_{d, r}=m p s_{d, r} \cdot\left(1-t y_{d, r}-t y f_{d, r} \cdot M U\right) \cdot Y H_{d, r}} \\
& C B U D_{d, r}=Y H_{d, r}-t y_{d, r} \cdot Y H_{d, r}-t y f_{d, r} \cdot M U \cdot Y H_{d, r}-S H_{d, r}+E R \cdot T R H W_{d, r} \\
& I N D E X_{r}=\sum_{c, d}\left[\left(1-t s c_{c, d, r}-t s c f_{c, d, r}\right) \cdot\left(1+t c f_{c, d, r}\right) \cdot\left(1+v a t_{c, d, r}+t c_{c, d, r}\right) \cdot\right. \\
& \left.P_{c, r} \cdot C Z_{c, d, r}\right] / \sum_{c, d}\left[\left(1-t s c 0_{c, d, r}-t s c f 0_{c, d, r}\right) \cdot\left(1+t c f 0_{c, d, r}\right) \cdot\right. \\
& \left.\left(1+v a t 0_{c, d, r}+t c 0_{c, d, r}\right) \cdot P Z_{c, r} \cdot C Z_{c, d, r}\right] \\
& C P I=\sum_{c, d, r}\left[\left(1-t s c_{c, d, r}-t s c f_{c, d, r}\right) \cdot\left(1+t c f_{c, d, r}\right) \cdot\left(1+v a t_{c, d, r}+t c_{c, d, r}\right) \cdot\right. \\
& \left.P_{c, r} \cdot C Z_{c, d, r}\right] / \sum_{c, d, r}\left[\left(1-t s c 0_{c, d, r}-t s c f 0_{c, d, r}\right) \cdot\left(1+t c f 0_{c, d, r}\right) \cdot\right. \\
& \left.\left(1+v a t 0_{c, d, r}+t c 0_{c, d, r}\right) \cdot P Z_{c, r} \cdot C Z_{c, d, r}\right]
\end{aligned}
$$

Federal Government :

TRHFG $_{d, r}=$ shunempb $_{d, r} \cdot$ trep $_{r} \cdot P W_{r} \cdot U N E M P_{r}+$ TRO $_{d, r} \cdot I N D E X_{r}$
$C F G B U D=T A X R F+\sum_{r}\left(T R F G F_{r} \cdot I N D E X_{r}-T R G F G_{r} \cdot I N D E X_{r}\right)-$
$\sum_{d, r}$ TRHFG $_{d, r}-$ TRFCFG $\cdot G D P D E F-S F G T \cdot M U F E D \cdot G D P D E F-$
$\sum_{c, d, r} t s c f_{c, d, r} \cdot P_{c, r} \cdot C_{c, d, r}-\sum_{e n, s, r} t s c i o f_{e n, s, r} \cdot P_{e n, r} \cdot E N I N P m_{e n, s, r}$
$-\sum_{e n, s, v, r} t s c i o f f_{e n, s, r} \cdot P_{e n, r} \cdot E N I N P v_{e n, s, v, r}-\sum_{\text {nen }, s, r} t s c i o f f_{\text {nen }, s, r} \cdot P_{\text {nen }, r} \cdot i o_{\text {nen }, s, r} \cdot X D m_{s, r}$
$-\sum_{\text {nen }, s, v, r} t s \operatorname{ciof}_{\text {nen }, s, r} \cdot P_{\text {nen, }, r} \cdot i o_{\text {nen }, s, r} \cdot X D v_{s, v, r}-\sum_{s, r}\left(X D_{s, r} \cdot P D_{s, r}-C S E A R C H_{s, r}\right) \cdot t s p f_{s, r}$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

$$
\begin{aligned}
& \text { TAXRF }=\sum_{d, r}\left(t y f_{d, r} \cdot M U \cdot Y H_{d, r}\right)+\sum_{c, d, r}\left(1-t s c_{c, d, r}-t s c f_{c, d, r}\right) \cdot t c f_{c, d, r} \cdot P_{c, r} \cdot C_{c, d, r}+ \\
& \sum_{c, d, r}\left(1-t s c_{c, d, r}-t s c f_{c, d, r}\right) \cdot\left(1+t c f_{c, d, r}\right) \cdot v a t_{c, d, r} \cdot P_{c, r} \cdot C_{c, d, r}+ \\
& \sum_{c, r} t m_{c, r} \cdot M_{c, r} \cdot P W M Z_{c} \cdot E R+\sum_{c, r} P_{c, r} \cdot I_{c, r} \cdot\left(v a t i_{c, r}+t c i_{c, r}\right)+ \\
& \sum_{\text {scnel }, r} t k f_{\text {scnel }, r} \cdot M U F \cdot K S K m_{\text {scnel }, r} \cdot R K m_{\text {scnel }, r}+\sum_{\text {sel }, r} t k f_{\text {sel }, r} \cdot M U F \cdot K S K m_{\text {sel }, r} \cdot R K e l_{r}+ \\
& \sum_{\text {slnng }, r} t k f_{\text {slnng }, r} \cdot M U F \cdot K S K m_{\text {slnng }, r} \cdot R K m_{\text {slnng }, r}+\sum_{\text {sng }, r} t k f_{\text {sng }, r} \cdot M U F \cdot K S K m_{\text {sng }, r} \cdot R K n g_{r}+
\end{aligned}
$$

$$
\begin{align*}
& \sum_{s, r} t l_{s, r} \cdot L m_{s, r} \cdot P L_{s, r}+\sum_{s, r, v}\left(t k f_{s, r} \cdot M U F \cdot K S K v_{s, v, r} \cdot R K v_{s, v, r}+t l_{s, r} \cdot L v_{s, v, r} \cdot P L_{s, r}\right)+ \\
& \sum_{b k, r} t l_{b k, r} \cdot L m_{b k, r} \cdot P L_{b k, r}+\sum_{s, r}\left[\left(X D_{s, r} \cdot P D_{s, r}-\text { CSEARCH }_{s, r}\right) \cdot t p f_{s, r}\right]+ \\
& \sum_{e n, s, r}\left(1-t s c i o_{e n, s, r}-t s c i o f_{e n \Omega, s, r}\right) \cdot P_{e n, r} \cdot \text { vatio }_{e n, s, r} \cdot E N I N P m_{e n, s, r}+ \\
& \sum_{e n, s, v, r}\left(1-t s c i o_{e n, s, r}-\text { tsciof }_{e n, s, r}\right) \cdot P_{e n, r} \cdot \text { vatio }_{e n, s, r} \cdot E N I N P v_{e n, s, v, r}+ \\
& \sum_{\text {nen }, s, r}\left(1-t s c i o_{\text {nen }, s, r}-\text { tsciof }_{\text {nen }, s, r}\right) \cdot P_{\text {nen }, r} \cdot \text { vatio }_{\text {nen }, s, r} \cdot i o_{\text {nen }, s, r} \cdot X D m_{s, r}+ \\
& \sum_{\text {nen,s,v,r}}\left(1-t s c i o_{\text {nen }, s, r}-\text { tsciof }_{n e n, s, r}\right) \cdot P_{\text {nen,r },} \cdot \text { vatio }_{\text {nen }, s, r} \cdot i o_{\text {nen }, s, r} \cdot X D v_{s, v, r} \tag{6.2.76}\\
& P_{c, r} \cdot C F G_{c, r}=\alpha F G_{c, r} \cdot C F G B U D \tag{6.2.77}
\end{align*}
$$

Regional Governments:
CGBUD $_{r}=$ TAXR $_{r}+$ TRGFC $_{r} \cdot$ INDEX $_{r}+$ TRGFG $_{r} \cdot$ INDEX $_{r}-$
\sum_{d} TRHG $_{d, r} \cdot$ INDEX $r_{r}-E R \cdot$ TRWG $_{r}-$ SG $_{r} \cdot$ INDEX $X_{r}-$
$\sum_{c, d} t s c_{c, d, r} \cdot P_{c, r} \cdot C_{c, d, r}-\sum_{s}\left(X D_{s, r} \cdot P D_{s, r}-\right.$ CSEARCH $\left._{s, r}\right) \cdot t s p_{s, r}-$
$\sum_{e n, s} t s c i o_{e n, s, r} \cdot P_{e n, r} \cdot E N I N P m_{e n, s, r}-\sum_{e n s, s, v} t s c i o_{e n, s, r} \cdot P_{e n, r} \cdot E N I N P v_{e n, s, r, r}-$

$P_{c, r} \cdot C G_{c, r}=\alpha G_{c, r} \cdot C G B U D_{r}$
$T A X R_{r}=\sum_{d} t y_{d, r} \cdot Y H_{d, r}+\sum_{c, d}\left(1-t s c_{c, d, r}-t s c f_{c, d, r}\right) \cdot\left(1+t c f_{c, d, r}\right) \cdot t c_{c, d, r} \cdot P_{c, r} \cdot C_{c, d, r}+$
$\sum_{s}\left(X D_{s, r} \cdot P D_{s, r}-\right.$ CSEARCH $\left._{s, r}\right) \cdot t p_{s, r}+\sum_{\text {screl }} t k_{\text {scnel }, r} \cdot K S K m_{\text {scne }, r} \cdot R K m_{\text {senel, }, r}+$
$\sum_{s e l} t k_{\text {sel, },} \cdot K S K m_{\text {sel }, r} \cdot R K e l_{r}+\sum_{\text {sllnng }} t k_{\text {slnng, }, r} \cdot K S K m_{\text {slnng }, r} \cdot R K m_{\text {slnng }, r}+$
$\sum_{s n g} t k_{s \text { sug }, r} \cdot K S K m_{\text {svg }, r} \cdot R K n g_{r}+\sum_{\text {bkel }} t k_{\text {blel }, r} \cdot K S K m_{\text {blel }, r} \cdot R K e l_{r}+$
$\sum_{\text {blang }} t k_{b l u g g, r} \cdot K S K m_{b l u g s, r} \cdot R K n g_{r}+\sum_{s, r, v} t k_{s, r} \cdot K S K v_{s, v, r} \cdot R K v_{s, v, r}$
French Community:
$C F C B U D=T R F C F G \cdot G D P D E F-T R G F C_{w} \cdot I N D E X_{w}$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »
$P_{c, r} \cdot C F C_{c, r}=\alpha F C_{c, r} \cdot C F C B U D$

Inter-regional and foreign trade:
$P M_{c, r}=\left(1+t m_{c, r}\right) \cdot E R \cdot P W M Z_{c}$
$M_{c, r}=X_{c, r} \cdot a A_{c, r}^{\left(\sigma A_{c r}-l\right)} \cdot \gamma A l_{c, r}^{\sigma A_{c r}} \cdot\left(P_{c, r} / P M_{c, r}\right)^{\sigma A_{c, r}}$
$M E_{s, c, r, r}=X_{c, r} \cdot a A_{c, r}^{\left(\sigma A_{c r}-1\right)} \cdot \gamma A 2_{s, c, r}^{\sigma A_{c r}} \cdot\left(P_{c, r} / P D M_{s, c, r, r}\right)^{\sigma A_{c, r}}$
$M E_{s, c, r r, r}=X_{c, r} \cdot a A_{c, r}^{\left(\sigma A_{c r}-1\right)} \cdot \gamma A 3_{s, c, r}^{\sigma A_{c r}} \cdot\left(P_{c, r} / P D M_{s, c, r r, r}\right)^{\sigma A_{c r}}$
$X D D_{s, c, r}=X_{c, r} \cdot a A_{c, r}^{\left(\sigma A_{c, r}-l\right)} \cdot \gamma A 4_{s, c, r}^{\sigma A_{c, r}} \cdot\left(P_{c, r} / P D D_{s, c, r}\right)^{\sigma A_{c, r}}$
$P E_{s}=P W E Z_{s} \cdot E R$
$E_{s, r}=\left(X D_{s, r}-\right.$ CSEARCH $\left._{s, r} / P D_{s, r}\right) \cdot a T_{s, r}^{\left(\sigma T_{s,-}-l\right)} \cdot \gamma T l_{s, r}^{\sigma T_{s, r}} \cdot\left(P D_{s, r} / P E_{s}\right)^{\sigma T_{s, r}}$
$P D D_{\text {solig }, c, r}=$ MCOSTS $_{\text {solig }, r} \cdot\left[\right.$ elas Re $g_{\text {solig }, c, r} \cdot N F_{\text {solig }, r} /\left(\right.$ elas Re $\left.\left.g_{\text {solig }, c, r} \cdot N F_{\text {solig }, r}-1\right)\right]$
$P D E_{\text {solig }, \text { c, }, r r}=$ COSTS $_{\text {solig }, r} \cdot\left[\right.$ elasReg $_{\text {solig }, \text {, }} \cdot N F_{\text {solig }, r} /\left(\right.$ elasReg $\left.\left._{\text {solig }, \text {, }, r} \cdot N F_{\text {solig }, r}-1\right)\right]$
$P D E_{\text {solig }, \text {,r,rrr }}=\left[\right.$ MCOSTS $_{\text {solig },} \cdot$ elasReg $_{\text {solig }, c, r} \cdot N F_{\text {solig }, r} /\left(\right.$ elasReg $\left.\left._{\text {solig }, \text { cr }} \cdot N F_{\text {solig }, r}-1\right)\right]$
$P D D_{\text {smon }, c, r}=$ MCOSTS $_{\text {smon }, r} /$ elas $\operatorname{Re} g_{\text {smon }, \text {, }, r}$
$P D E_{\text {smon }, \text {, }, \text { r,rr }}=$ MCOSTS $_{\text {smon }, r}$ /elasReg $_{\text {smon }, \text {, }, r}$
$P D E_{\text {smon }, \text { c, }, \text { rrr }}=$ MCOSTS $_{\text {smon }, r} /$ elasReg $_{\text {smon }, \text {, }, r}$
$P D E_{s, c, r, r r} \cdot E M_{s, c, r, r r}=P D M_{s, c, r, r} \cdot M E_{s, c, r r r}$
$P D E_{s, c, r, r r r} \cdot E M_{s, c, r, r r}=P D M_{s, c, r r r} \cdot M E_{s, c, r, r r r}$
$E M_{s, c, r, r r}=M E_{s, c, r, r r}$
$E M_{s, c, r, r r r}=M E_{s, c, r, r r r}$
$S W T=\sum_{c, r} M_{c, r} \cdot P W M Z_{c}-\sum_{d, r} T R H W_{d, r}-\sum_{s, r} P W E Z_{s} \cdot E_{s, r}-L W_{r} \cdot P L W Z+$
$+\sum_{r} T R W G_{r}$

Investment:

$$
\begin{equation*}
P I=\prod_{c, r}\left[P_{c, r} \cdot\left(l+v a t i_{c, r}+t c i_{c, r}\right) / \alpha I_{c, r}\right]^{\alpha I_{c, r}} \tag{6.2.101}
\end{equation*}
$$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »
$S=\sum_{r} S G_{r} \cdot I N D E X_{r}+S F_{r}+S F G T \cdot M U F E D \cdot G D P D E F+S W T \cdot E R+$
$\sum_{s, r} D P m_{s, r} \cdot P I+\sum_{b k, r} D P m_{b k, r} \cdot P I+\sum_{s, v, r} D P v_{s, v, r} \cdot P I+\sum_{d, r} S H_{d, r}$
$D P m_{s, r}=d_{s, r} \cdot K S K m_{s, r}$
$D P m_{b k r}=d_{b k, r} \cdot K S K m_{b k r}$
$D P v_{s, v, r}=d_{s, r} \cdot K S K v_{s, v, r}$
$S V_{c, r}=s v r_{c, r} \cdot X_{c, r}$
$P_{c, r} \cdot I_{c, r} \cdot\left(1+v a t i_{c, r}+t c i_{c, r}\right)=\alpha I_{c, r} \cdot\left(S-\sum_{c,, r r} S V_{c c, r} \cdot P_{c c, r r}\right)$

Zero profit conditions:
$P K L E m_{s c, r} \cdot K L E m_{s c, r}=P K E m_{s c, r} \cdot K E m_{s c, r}+\left(1+t l_{s c, r}\right) \cdot P L_{s c, r} \cdot L m_{s c, r}$
$\left(1-t p_{s c, r}-t p f_{s c, r}+t s p_{s c, r}+t s p f_{s c, r}\right) \cdot P D m_{s c, r} \cdot X D m_{s c, r}=K L E m_{s c, r} \cdot P K L E m_{s c, r}+$ $\sum_{\text {nen }}\left(1-\right.$ tscio $_{\text {nens,s, },-}-$ tsciof $\left._{\text {nens, } s, r}\right) \cdot\left(1+\right.$ vatio $\left._{\text {nenss, }, r}\right) \cdot i o_{\text {nen, sc, },} \cdot P_{\text {nen }, r} \cdot X D m_{s c, r}$
$\left(1-t p_{a g, r}-t p f_{a g, r}+t s p_{a g r, r}+t s p f_{a g, r}\right) \cdot P D m a_{a g y, r} \cdot X D m_{a g y, r}=$
$K L E m_{a g r, r} \cdot P K L E m_{a g, r}+a N R E S_{a g r, r} \cdot X D m_{a g, r} \cdot P N R E S_{r}+$

$P K E m_{\text {scnel, },} \cdot K E m_{\text {screl, },}=\left[\left(1+t k f_{\text {scell },} \cdot M U F+t k_{\text {scnel, },}\right) \cdot R K m_{\text {screle, }}+d_{\text {scnel, },} \cdot P I\right]$.
$K^{\prime 2} m_{\text {scel, },}+$ PENm $_{\text {screl, },} \cdot E N E R m_{\text {screl }, r}$
$P K E m_{\text {sel, }} \cdot K E m_{\text {sel, },}=\left[\left(1+t k f_{\text {sel, }} \cdot M U F+t k_{\text {sel, }}\right) \cdot R K e l_{r}+d_{\text {sel, }} \cdot P I\right] \cdot K S K m_{\text {sel, },}+$
PENm $_{\text {sel, }} \cdot$ ENERm $_{\text {sel, },}$
PENm $_{s c, r} \cdot E N E R m_{s c, r}=\sum_{e l}\left(1-t s c i o_{e l, s, r},-t s c i o o_{e l s, c, r}\right) \cdot\left(1+\right.$ vatio $\left._{l, s, c, r}\right) \cdot P_{e l, r} \cdot E N I N P m_{e l s, c, r}+$
PEOGm $_{s c, r} \cdot$ ENEROGm $_{s c, r}$

$\left(1+\right.$ vatio $\left.\left._{\text {enl.s.s. }}\right) \cdot E N I N P m_{\text {enl.s.s.r }}\right]$

$P K L m_{\text {sng }, r} \cdot K L m_{\text {sng, } r}=\left[\left(1+t k f_{s s_{g}, r} \cdot M U F+t k_{s n g r}\right) \cdot R K n g_{r}+d_{s n g r} \cdot P I\right)$.
$K S K m_{s n g, r}+\left(1+t l_{s n g, r}\right) \cdot P L_{s n g, r} \cdot L m_{s n g}$,

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis "

$$
\begin{align*}
& \left(1-t p_{s, r}-t p_{s l, r}+t s p_{s, r}+t s p f_{s, r}\right) \cdot P D a_{s l, r} \cdot X D m_{s l, r}=P K L m_{s l, r} \cdot K L m_{s l, r}+ \\
& \sum_{\text {en }}\left(1-\text { tscio }_{\text {ens,l, }, r}-\text { tsciof }_{\text {ens,l, },}\right) \cdot\left(1+\text { vatio }_{\text {ens,l, },}\right) \cdot P_{\text {en, },} \cdot E N I N P m_{\text {en,s, }, r}+ \tag{6.2.117}\\
& \sum_{\text {nen }}\left(1-\text { tscio }_{\text {nen }, s, r}-t s c i o f_{\text {nens }, l, r}\right) \cdot\left(1+\text { vatio }_{\text {nen }, s, r}\right) \cdot P_{\text {nen, }, r} \cdot \operatorname{lo} o_{\text {nen }, s, r} \cdot X D m_{s, r} \\
& P K L E v_{s c, v,} \cdot K L E v_{s c, r, r}=P K E v_{s c, v, r} \cdot K E v_{s c, r, r}+\left(1+t l_{s c, r}\right) \cdot P L_{s c, r} \cdot L v_{s c, v r} \tag{6.2.118}\\
& \left(1-t p_{s c, r}-t p f_{s c, r}+t s p_{s c, r}+t s p f_{s c, r}\right) \cdot P D v_{s c, v, r} \cdot X D v_{s c, v, r}=P K L E v_{s c, v, r} \cdot K L E v_{s c, v, r}+ \tag{6.2.119}
\end{align*}
$$

$$
\begin{align*}
& \left(1-t p_{a g r, r}-t p f_{a g, r}+t s p_{a g r, r}+t s p f_{a g r, r}\right) \cdot P D v_{a g r, v, r} \cdot X D v_{a g r, v, r}=P K L E v_{a g r, v, r} \cdot K L E v_{a_{g g r, v}, r}+ \tag{6.2.120}
\end{align*}
$$

> aNRES $_{a g r, r} \cdot P$ PRES $S_{r} \cdot X D v_{a g r, v, r}$
> $P K E v_{s c, p, r} \cdot K E v_{s c, p, r}=\left[\left(1+t k s_{s c, r} \cdot M U F+t k_{s c r}\right) \cdot R K v_{s c, r, r}+d_{s c, r} \cdot P I\right] \cdot K S K v_{s c, v, r}+$
> PENv $v_{s c, v, r} \cdot E N E R v_{s c, v, r}$
> PENv $v_{s c, v, r} \cdot E N E R v_{s c, v, r}=P E O G v_{s c, v, r} \cdot E N E R O G v_{s c, v, r}+$
> $\sum_{e l}\left(1-t s c i o_{e l, s, r}-t s c i o f_{e l s, c, r}\right) \cdot\left(1+\right.$ vatio $\left._{e l, s, r}\right) \cdot P_{e l, l} \cdot E N I N P v_{e l, s, v, r}$

$$
\begin{align*}
& \left.\left(1+\text { vatio }_{\text {enlssc. },}\right) \cdot E N I N P v_{\text {enls } s, v, r}\right]
\end{align*}
$$

$P K L v_{s l, v, r} \cdot K L v_{s l v, r}=\left[\left(1+t k f_{s l, r} \cdot M U F+t k_{s l, r}\right) \cdot R K v_{s l, v, r}+d_{s l, r} \cdot P I\right] \cdot K S K v_{s l, v, r}$
$+\left(1+t l_{s l, r}\right) \cdot P L_{s l, r} \cdot L v_{s l, v r}$
$\left(1-t p_{s l, r}-t p f_{s, r}+t s p_{s l, r}+t s p f_{s, r}\right) \cdot P D v_{s l, v, r} \cdot X D v_{s l, v, r}=K L v_{s l, v, r} \cdot P K L v_{s l v, r}+$
$\sum_{e n}\left(1-\right.$ tscio $\left._{\text {en,l,l,r}}-t s c i o f_{\text {en, }, l, r}\right) \cdot\left(1+\right.$ vatio $\left._{\text {en, }, l, r}\right) \cdot P_{\text {en, }, r} \cdot E N I N P_{\text {en,s,l,v,r }}+$

$\sum_{n e n} i_{n e n, b n g, r} \cdot \operatorname{markupBK_{bbng,r}\cdot } \cdot P_{n e n, r}-P_{n g, r e g} \geq 0$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

$P K L O_{\text {bkel, }, r}=a L m I_{\text {bkel }, r} \cdot P K L m_{\text {bkel, }, r} \cdot \operatorname{markupBK} K_{\text {bkel, }, r}+\sum_{\text {nen }} i o_{\text {nen }, \text { belel, },} \cdot P_{\text {nen }, r} \cdot \operatorname{markup} B K_{\text {bkel }, r}$

PKLm $m_{\text {bkel, }, r}=\left[\gamma B K\right.$ Kel $3 I_{b k e l, r}^{\sigma \text { GKel } 3_{b l e l, r}} \cdot\left(\right.$ RKel $_{r} \cdot\left(1+t k f_{b k e l, r} \cdot M U F+t k_{\text {bkel, },}\right)+$

PDrig $_{s, r} \cdot X D r i g_{s, r}=\sum_{v} P D v_{s, v, r} \cdot X D v_{s, v, r}$
$P D_{s, r} \cdot X D_{s, r}-$ CSEARCH $_{s, r}=$ PDma $_{s, r} \cdot$ DDm $_{s, r}+$ PDrig $_{s, r} \cdot$ XDrig $_{s, r}$
$P_{c, r} \cdot X_{c, r}=P M_{c, r} \cdot M_{c, r}+\sum_{s}\left[M E_{s, c, r, r, r} \cdot P D M_{s, c, r r, r}+M E_{s, c, r r r, r} \cdot P D M_{s, c, r r v, r}+\right.$
$\left.P D D_{s, c, r} \cdot X D D_{s, c, r}\right]$
$P D_{s, r} \cdot X D_{s, r}-$ CSEARCH $_{s, r}=P E_{s} \cdot E_{s, r}+\sum_{c}\left[E M_{s, c, r, r r} \cdot P D E_{s, c, r, r r}\right.$
$\left.+E M_{s, c, r, r r r} \cdot P D E_{s, c, r r r r}+P D D_{s, c, r} \cdot X D D_{s, c, r}\right]$

Labor market:

$$
\begin{align*}
& \sum_{s b k} L_{s b k, w}=L S R_{w}-s h W B x \cdot \sum_{s b k} L_{s b k, b}-s h W F l \cdot \sum_{s b k} L_{s b k, f}-U N E M P_{w} \tag{6.2.136}\\
& \sum_{s b k} L_{s b k, f}=L S R_{f}-s h F l B x \cdot \sum_{s b k} L_{s b k, b}+s h W F l \cdot \sum_{s b k} L_{s b k, f}-U N E M P_{f} \tag{6.2.137}\\
& \sum_{s b k} L_{s b k, b}=L S R_{b}+s h W B x \cdot \sum_{s b k} L_{s b k, b}+s h F l B x \cdot \sum_{s b k} L_{s b k, b}-U N E M P_{b} \tag{6.2.138}\\
& L_{s, r}=L m_{s, r}+\sum_{v} L v_{s, v, r} \tag{6.2.139}\\
& L_{b k, r}=L m_{b k, r} \tag{6.2.140}\\
& L S_{r}=L S R_{r}+L W_{r} \tag{6.2.141}\\
& L S N=\sum_{r} L S_{r} \tag{6.2.142}
\end{align*}
$$

$\sum_{s b k} L_{s b k, w} \cdot P L_{s b k, w}=L S R_{w} \cdot P W_{w}-\operatorname{shWBx} \cdot \sum_{s b k} L_{s b k, b} \cdot P L_{s b k, b}-$
$\operatorname{shWFl} \cdot \sum_{s b k} L_{s b k, f} \cdot P L_{s b k, f}-U N E M P_{w} \cdot P W_{w}$
$\sum_{s b k} L_{s b k, f} \cdot P L_{s b k, f}=L S R_{f} \cdot P W_{f}-s h F l B x \cdot \sum_{s b k} L_{s b k, b} \cdot P L_{s b k, b}+$
$\operatorname{shWFl} \cdot \sum_{s b k} L_{s b k, f} \cdot P L_{s b k, f}-U N E M P_{f} \cdot P W_{f}$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

$$
\begin{align*}
& \sum_{s b k} L_{s b k, b} \cdot P L_{s b k, b}=L S R_{b} \cdot P W_{b}+s h W B x \cdot \sum_{s b k} L_{s b k, b} \cdot P L_{s b b, b} \\
& +s h F l B x \cdot \sum_{s b k} L_{\text {sbb }, b} \cdot P L_{s b k, b}-U N E M P_{b} \cdot P W_{b} \\
& \text { UNRATE }_{r}=\left(U N E M P_{r} / L S_{r}\right) \cdot 100 \tag{6.2.146}\\
& \text { UNRATEN }=\left(\sum_{r} U N E M P_{r} / L S N\right) \cdot 100 \tag{6.2.147}\\
& P L_{s, r} \cdot L_{s, r} \cdot\left(1+t l_{s, r}\right)=P L U_{s, r} \cdot L_{s, r} \cdot\left(1+t l_{s, r}\right)-(1-\alpha B) \cdot \operatorname{scalB}_{s, r} \cdot \text { PROFITS }_{s, r} \tag{6.2.148}
\end{align*}
$$

$(1-\alpha B) \cdot$ scalB $_{\text {blag }, r} \cdot\left(\right.$ PROFITS $_{\text {blag }, r}+$ PROFITSZ $_{\text {sug },} \cdot$ GDPDEF $)$
$P L_{b k e l, r} \cdot\left(L m_{\text {bele }, r}+L Z_{\text {sel }, r}\right) \cdot\left(1+t l_{b k e l, r}\right)=P L U_{\text {bkel }, r} \cdot\left(L m_{\text {blel }, r}+L Z_{\text {sel }, r}\right) \cdot\left(1+t l_{b \text { bel }, r}\right)-$
$(1-\alpha B) \cdot$ scalB $_{\text {bele },} \cdot\left(\right.$ PROFITS $_{\text {bkel }, r}+$ PROFITSZ $_{\text {sel },} \cdot$ GDPDEF $)$
$P L U_{s, r}=\left(1-P R_{r}\right) \cdot P L Z_{s, r} \cdot I N D E X_{r} \cdot$ trep $_{r}+P R_{r} \cdot P W_{r}$
$P L U_{b k, r}=\left(1-P R_{r}\right) \cdot P L Z_{b k, r} \cdot I N D E X_{r} \cdot$ trep $_{r}+P R_{r} \cdot P W_{r}$
$P R_{r}=N M_{r} \cdot 100 /\left(L S_{r} \cdot U N R A T E_{r}\right)$
$Q R_{r}=N M_{r} / \sum_{s b k} N V_{s b k, r}$
$N V_{s, r} \cdot Q R_{r}=L_{s, r}-L D Z_{s, r}+\mu \cdot L D Z_{s, r}$
$N V_{b k, r} \cdot Q R_{r}=L m_{b k, r}-L m D Z_{b k, r}+\mu \cdot L m D Z_{b k, r}$
$N M_{r}=a M_{r} \cdot\left[\alpha M_{r} \cdot\left(\sum_{s b k} N V_{s b k, r}\right)^{((\sigma M-1) / \sigma M)}+\left(1-\alpha M_{r}\right)\right.$.
$\left.\left(L S_{r} \cdot \text { UNRATE }_{r}\right)^{(\sigma M-1) / \sigma M)}\right]^{(\sigma M /(\sigma M-l))}$
CSEARCH $_{s, r}=N V_{s, r} \cdot w v_{s, r} \cdot$ INDEX $_{r}$
CSEARCH $_{b k, r}=N V_{b k, r} \cdot w v_{b k, r} \cdot I N D E X_{r}$

Market clearing:

$$
\begin{align*}
& \sum_{d} C_{n e n d, r}+I_{n e n, r}+S V_{n e n, r}+\sum_{s} i o_{n e n s, r} \cdot X D m_{s, r}+\sum_{s, v} i o_{n e n s, s, r} \cdot X D v_{s, v, r}+ \tag{6.2.160}
\end{align*}
$$

$$
\begin{align*}
& C G_{n e n, r}+C F G_{n e n, r}+C F C_{\text {nen,r }}=X_{\text {nen }, r} \\
& \sum_{d} C_{\text {enlg }, d, r}+I_{\text {enlg }, r}+S V_{\text {enl }, r}+\sum_{s b k} E N I N P m_{\text {enl } g s t h k, r}+\sum_{s, v} E N I N P v_{\text {enlg } s, v, r}+ \tag{6.2.161}\\
& C G_{\text {enlg }, r}+C F G_{\text {enlg }, r}+C F C_{\text {enlg } r}=X_{\text {enlg }, r}
\end{align*}
$$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

$$
\begin{align*}
& \sum_{d} C_{e l, d, r}+I_{e l, r}+S V_{e l, r}+\sum_{s b k} E N I N P m_{e l, s b k, r}+\sum_{s, v} E N I N P v_{e l, s, v, r}+ \tag{6.2.162}\\
& C G_{e l, r}+C F G_{e l, r}+C F C_{e l, r}=X_{e l, r}+\sum_{b k e l} X D m E L_{b k e l, r} \\
& \sum_{d} C_{n g, d, r}+I_{n g, r}+S V_{n g, r}+\sum_{s b k} E N I N P m_{n g, s k k, r}+\sum_{s, v} E N I N P v_{n g, s, v, r}+ \tag{6.2.163}\\
& C G_{n g, r}+C F G_{n g, r}+C F C_{n g, r}=X_{n g, r}+\sum_{b k n g} X D m_{b k n g, r} \\
& K S K_{s, r}=K S K m_{s, r}+\sum_{v} K S K v_{s, v, r} \tag{6.2.164}\\
& K S K_{b k, r}=K S K m_{b k, r} \tag{6.2.165}\\
& K S K T n g_{r}=\sum_{b k n g} K S K m_{b k n g, r}+\sum_{s n g} K S K m_{s n g, r} \tag{6.2.166}\\
& K S K T e l_{r}=\sum_{b k e l} K S K m_{b k e l, r}+\sum_{s e l} K S K m_{s e l, r} \tag{6.2.167}\\
& N R E S S_{r} \geq \sum_{a g r} N R E S_{a g g, r}+\sum_{b k e l} N R E S_{b k e l, r} \tag{6.2.168}\\
& F F S_{r} \geq \sum_{b k e l} F F_{b k e l, r} \tag{6.2.169}
\end{align*}
$$

Greenhouse gases emissions:

$$
\begin{align*}
& \text { CO2EMISEN }_{\text {enl } l, s, r}=\text { CO2GJ }_{\text {enl }, r} \cdot G J O U L E_{e n l, s, r} \cdot\left(E N I N P m_{e n l, s, r}+\right. \\
& \left.\sum_{v} E N I N P v_{e n l s, v, r}\right) \cdot C O 2 S C A L_{s, r} \tag{6.2.170}
\end{align*}
$$

CO2EMIS $_{s, r}=$ CO2SCAL $_{s, r} \cdot \sum_{\text {enl }}\left[\right.$ CO2GJ $_{\text {enl }, r} \cdot$ GJOULE $_{\text {enl } l, s, r}$.
$\left.\left(E N I N P m_{e n l, s, r}+\sum_{v} E N I N P v_{e n l s, v, r}\right)\right]$

CO2EMISH $_{r}=$ CO2SCALH $_{r} \cdot \sum_{e n l}\left(\right.$ CO2GJ $\left._{\text {enl }, r} \cdot G J O U L E H_{\text {enl }, r} \cdot \sum_{d} C_{\text {enl }, \text {, } r}\right)$
CO2EMISHD $_{d, r}=$ CO2SCALHD $_{d, r} \cdot \sum_{e n l}$ CO2GJ $_{\text {enl }, r} \cdot$ GJOULEHD $_{\text {enll, }, r} \cdot C_{\text {enl }, d, r}$

CO2EMISR $_{r}=\sum_{s}\left(\right.$ CO2EMIS $_{s, r}+$ CO2PROC $\left._{s, r}\right)+$ CO2EMISH $_{r}$
CO2EMISRS $_{r}=\sum_{s}\left(\right.$ CO2EMIS $_{s, r}+$ CO2PROC $\left._{s, r}\right)$

CO2EMISN $_{s}=\sum_{r}\left(\right.$ CO2EMIS $_{s, r}+$ CO2PROC $\left._{s, r}\right)$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

$$
\begin{align*}
& \text { CO2EMISNAT }^{\prime}=\sum_{s} \text { CO2EMISN }_{s}+\sum_{r} \text { CO2EMISH }_{r} \tag{6.2.177}\\
& \text { CO2PROC }_{s, r}=\text { CO2GJPROC }_{s, r} \cdot\left(X D_{s, r}-\text { CSEARCH }_{s, r} / P D_{s, r}\right) \tag{6.2.178}\\
& \text { CH4EMIS }_{s, r}=\text { CH4SCAL }_{s, r} \cdot \sum_{\text {enl }}\left[C H 4 G J_{\text {enl } s, r} \cdot G J O U L E_{\text {enls,s, }} .\right. \\
& \left.\left(E N I N P m_{e n l, s, r}+\sum_{v} E N I N P v_{\text {enl } l, s, r, r}\right)\right] \tag{6.2.179}\\
& \text { CH4EMISH }_{r}=\text { CH4SCALH }_{r} \cdot \sum_{e n l}\left[\text { CH4GJH }_{\text {enl }, r} \cdot \text { GJOULEH }_{\text {enl }, r} \cdot \sum_{d} C_{\text {enl }, d, r}\right] \tag{6.2.180}\\
& \text { CH4EMISHD }_{d, r}=\text { CH4SCALHD }_{d, r} \cdot \sum_{e n l} \text { CH4GJH }_{\text {enl }, r} \cdot \text { GJOULEHD }_{\text {enl }, d, r} \cdot C_{\text {enl }, d, r} \tag{6.2.181}\\
& \text { CH4EMISR }_{r}=\sum_{s} \text { CH4EMIS }_{s, r}+\text { CH4EMISH }_{r}+\sum_{s} \text { CH4PROC }_{s, r} \tag{6.2.182}\\
& \text { CH4EMISRS }_{r}=\sum_{s} \text { CH4EMIS }_{s, r}+\sum_{s} \text { CH4PROC }_{s, r} \tag{6.2.183}\\
& \text { CH4EMISN }_{s}=\sum_{r} \text { CH4EMIS }_{s, r}+\sum_{r} \text { CH4PROC }_{s, r} \tag{6.2.184}\\
& \text { CH4EMISNAT }=\sum_{s} \text { CH4EMISN }_{s}+\sum_{r} \text { CH4EMISH }_{r} \tag{6.2.185}\\
& \text { CH4PROC }_{s, r}=\text { CH4GJPROC }_{s, r} \cdot\left(X_{s, r}-\text { CSEARCH }_{s, r} / P D_{s, r}\right) \tag{6.2.186}\\
& \text { N2OEMIS }_{s, r}=\text { N2OSCAL }_{s, r} \cdot \sum_{\text {enl }}\left[N 2 O G J_{\text {enl } s, r} \cdot \text { GJOULE }_{\text {enl } l s, r} .\right. \tag{6.2.187}\\
& \left.\left(E N I N P m_{e n l, s, r}+\sum_{v} E N I N P v_{e n l, s, v, r}\right)\right] \\
& \text { N2OEMISH }_{r}=\text { N2OSCALH }_{r} \cdot \sum_{e n l}\left(\text { N2OGJH }_{\text {enl }, r} \cdot \text { GJOULEH }_{\text {enl }, r} \cdot \sum_{d} C_{e n l, d, r}\right) \tag{6.2.188}\\
& \text { N2OEMISHD }_{d, r}=\text { N2OSCALHD }_{d, r} \cdot \sum_{e n l} \text { N2OGJH }_{\text {enl }, r} \cdot \text { GJOULEHD }_{\text {enl }, d, r} \cdot C_{\text {enl, }, r} \tag{6.2.189}\\
& \mathrm{~N} 2 \mathrm{OEMISR}_{r}=\sum_{s}{\mathrm{~N} 2 \mathrm{OEMIS}_{s, r}}+\text { N2OEMISH }_{r}+\sum_{s} \mathrm{~N} 2 \mathrm{OPROC}_{s, r} \tag{6.2.190}\\
& \text { N2OEMISRS }_{r}=\sum_{s} \text { N2OEMIS }_{s, r}+\sum_{s} N 2 O P R O C_{s, r} \tag{6.2.191}\\
& \text { N2OEMISN }_{s}=\sum_{r} \text { N2OEMIS }_{s, r}+\sum_{r} \text { N2OPROC }_{s, r} \tag{6.2.192}\\
& \text { N2OEMISNAT }=\sum_{s} \text { N2OEMISN }_{s}+\sum_{r} \text { N2OEMISH }_{r} \tag{6.2.193}\\
& \mathrm{~N} 2 \mathrm{OPROC}_{s, r}=\text { N2OGJPROC }_{s, r} \cdot\left(X_{s, r}-\text { CSEARCH }_{s, r} / P D_{s, r}\right) \tag{6.2.194}
\end{align*}
$$

Gross domestic product (national and regional) and other aggregate variables:

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »
$G D P=\sum_{c, d, r}\left[P Z_{c, r} \cdot C_{c, d, r} \cdot\left(1-t s c 0_{c, d, r}-t s c f 0_{c, d, r}\right) \cdot\left(1+t c f 0_{c, d, r}\right)\right.$.
$\left(1+\right.$ vat $\left.\left.0_{c, d, r}+t c 0_{c, d, r}\right)\right]+\sum_{c, r}\left[P Z_{c, r} \cdot C G_{c, r}+P Z_{c, r} \cdot C F G_{c, r}+P Z_{c, r} \cdot C F C_{c, r}+\right.$
$P Z_{c, r} \cdot I_{c, r} \cdot\left(1+\right.$ vatio $\left.\left._{c, r}+t c i i_{c, r}\right)-P W M Z_{c} \cdot E R Z \cdot M_{c, r}\right]+\sum_{s, r} P E Z_{s} \cdot E_{s, r}$
$G D P C=\sum_{c, d, r}\left[P_{c, r} \cdot C_{c, d, r} \cdot\left(1-t s c_{c, d, r}-t s c f_{c, d, r}\right) \cdot\left(1+t c f_{c, d, r}\right)\right.$.
$\left.\left(1+\operatorname{vat}_{c, d, r}+t c_{c, d, r}\right)\right]+\sum_{c, r}\left[P_{c, r} \cdot C G_{c, r}+P_{c, r} \cdot C F G_{c, r}+P_{c, r} \cdot C F C_{c, r}+\right.$
$P_{c, r} \cdot I_{c, r} \cdot\left(1+\right.$ vati $\left.\left._{c, r}+t c i_{c, r}\right)-P W M Z_{c} \cdot E R \cdot M_{c, r}\right]+\sum_{s, r} P E_{s} \cdot E_{s, r}$
$G D P D E F=G D P C / G D P$
$G D P R_{r}=\sum_{c, d}\left[P Z_{c, r} \cdot C_{c, d, r} \cdot\left(1-t s c 0_{c, d, r}-t s c f 0_{c, d, r}\right) \cdot\left(1+t c f 0_{c, d, r}\right)\right.$.
$\left(1+\right.$ vato $\left.\left._{c, d, r}+t c 0_{c, d, r}\right)\right]+\sum_{c}\left[P Z_{c, r} \cdot C G_{c, r}+P Z_{c, r} \cdot C F G_{c, r}+P Z_{c, r} \cdot C F C_{c, r}+\right.$
$P Z_{c, r} \cdot I_{c, r} \cdot\left(1+\right.$ vatio $_{c, r}+$ tci $\left.\left._{c, r}\right)-P W M Z_{c} \cdot E R Z \cdot M_{c, r}\right]+\sum_{s} P E Z_{s} \cdot E_{s, r}$
RATIO $=$ CFGBUD $/$ GDPC
RINT $=\left[\sum_{\text {screl, },}\left(R K m_{\text {screl, }, r} / P D m a_{\text {scnel, }, r}\right) \cdot K S K m_{\text {scnel, }, r}+\sum_{\text {sel, }, r}\left(R K e l_{r} / P D m a_{\text {sel }, r}\right) \cdot K S K m_{\text {sel, }, r}+\right.$
$\sum_{\text {slmmg }, r}\left(R K m_{\text {slmmg }, r} / P D m a_{\text {slnng }, r}\right) \cdot K S K m_{\text {slmng }, r}+\sum_{\text {sng }, r}\left(R K n g_{r} / P D m a_{s n g, r}\right) \cdot K S K m_{\text {sng }, r}+$
$\sum_{s, v, r}\left(R K v_{s, v} / P D v_{s, v}\right) \cdot K S K v_{s, v}, r /\left[\sum_{s, r} K S K m_{s, r}+\sum_{s, v, r} K S K v_{s, v}\right]$
$E N I N P_{\text {ens, }, r}=E N I N P m_{\text {ens.s,r }}+\sum_{v} E N I N P_{\text {enns, v,r }}$
Equivalent variation
PLES $_{d, r}=\left\{\prod_{c}\left[\left(1-t s c_{c, d, r}-t s c f_{c, d, r}\right) \cdot\left(1+t c f_{c, d, r}\right) \cdot\left(1+t c_{c, d, r}+v a t_{c, d, r}\right)\right.\right.$.
$\left.\left.P_{c, r}\right]^{\alpha H_{c, t r}}\right\}^{\left(1-\alpha H L E S_{d, r}\right)} \cdot\left[P W_{r} \cdot\left(1-t y_{d, r}-t y f_{d, r} \cdot M U\right)\right]^{\alpha H E S_{d, r}}$
$S_{d, r}=C B U D_{d, r}-\sum_{c}\left[\mu H_{c, d, r} \cdot\left(1-t s c_{c, d, r}-t s c f_{c, d, r}\right) \cdot\left(1+t c f_{c, d, r}\right)\right.$.
$\left.\left(1+v a t_{c, d, r}+t c_{c, d, r}\right) \cdot P_{c, r}\right]$
$E V_{d, r}=\left(\right.$ PLESZ $_{d, r} /$ PLES $\left._{d, r}\right) \cdot S I_{d, r}-S I Z_{d, r}$
$V L E S_{d, r}=\left\{\prod_{c}\left[\alpha H_{c, d, r} /\left(\left(1-t s s_{c, d, r}-t s c f_{c, d, r}\right) \cdot\left(1+t c f_{c, d, r}\right)\right.\right.\right.$.
$\left.\left.\left.\left(1+t c_{c, d, r}+v a_{c, d, r}\right) \cdot P_{c, r}\right)\right]^{\alpha H_{c d, r}}\right\}^{\left(1-\alpha H E S_{d, r}\right)} \cdot\left[\alpha H L E S_{d, r} /\left(\left(1-\alpha H L E S_{d, r}\right)\right.\right.$.
$\left.\left.P W_{r} \cdot\left(1-t y_{d, r}-t y f_{d, r} \cdot M U\right)\right)\right]^{\alpha H L E S_{d, r}} \cdot S I_{d, r}$

Incorporation of recursive dynamics

$$
\begin{align*}
& R O R_{s n g, r, t}=-1+\left[R K m_{s n g, r, t} / P I_{t}+1\right] /\left[1+R I N T_{t}\right] \tag{6.2.206}\\
& R O R_{s e l, r, t}=-1+\left[\operatorname{RKel}_{r, t} / P I_{t}+1\right] /\left[1+R I N T_{t}\right] \tag{6.2.207}\\
& R O R_{b k e l, r, t}=-1+\left[\operatorname{RKel}_{r, t} / P I_{t}+1\right] /\left[1+\operatorname{RINT}_{t}\right] \tag{6.2.208}\\
& R O R_{s n g, r, t}=-1+\left[R K n g_{r, t} / P I_{t}+1\right] /\left[1+R I N T_{t}\right] \tag{6.2.209}\\
& R O R_{b k n g, r, t}=-1+\left[R K n g_{r, t} / P I_{t}+1\right] /\left[1+R I N T_{t}\right] \tag{6.2.210}\\
& I N V_{s b k, r, t}=\operatorname{KSKm}_{s b k, r, t} \cdot\left\{\left[e^{B_{s b k, r} \cdot\left(R O R_{s b k, r t}-\text { RORZ }_{s b k, t, t}\right)} \cdot \text { KSKg max }_{s b k, r} .\right.\right. \\
& \left(\text { KSKtrend }_{s b k, r}-\text { KSKg min }_{s b k, r}\right)+\text { KSKg min } \min _{s b k, r} . \\
& \left.\left(\text { KSKg max }_{\text {sbk }, r}-\text { KSKtrend }_{s b k, r}\right)\right] /\left[e^{B_{s b k, r} \cdot\left(R O R_{\text {sbk }, r_{t}}-\text { RORZ }_{\text {sbk }, t, t}\right)}\right. \text {. } \tag{6.2.211}\\
& \left.\left.\left(\text { KSKtrend }_{s b k, r}-\text { KSKg }_{\min }^{s b k, r}, r\right)+\left(\text { KSKg max }_{s b k, r}-\text { KSKtrend }_{s b k, r}\right)\right]+1\right\} \\
& - \text { KSKm }_{s b k, r, t} \cdot\left(1-\phi_{s b k, r}\right) \cdot\left(1-d_{s b k, r}\right) \\
& \operatorname{KSKm}_{s, r, t+1}=\left(1-d_{s, r}\right) \cdot\left(1-\phi_{s, r}\right) \cdot \text { KSKm }_{s, r, t}+I N V_{s, r, t} \tag{6.2.212}\\
& K S K v_{s, v, r, t+1}=\phi_{s, r} \cdot\left(1-d_{s, r}\right) \cdot \text { KSKm }_{s, r} \quad \text { for } \mathrm{v}=1 \tag{6.2.213}\\
& K S K v_{s, v+1, r, t+1}=\left(1-d_{s, r}\right) \cdot K S K v_{s, v, r, t} \quad \text { for } v=2,3, \ldots \tag{6.2.214}
\end{align*}
$$

Name of the variables:

aLm $1_{\text {sbl }}$,	technical coefficient corresponding to the capital-energy bundle (KLm) in the Leontief production function for the LEO sectors (first nest) (corresponding to the output produced using malleable capital)
CBUD ${ }_{\text {d, }}$	household budget disposable for consumption by decile and region
$\mathrm{C}_{\mathrm{c}, \mathrm{d}, \mathrm{r}}$	households consumption demand (excluding vat and consumption taxes) by commodity, decile and region
CFCBUD	French community disposable budget
CFCC, ${ }_{\text {r }}$	French community demand for commodities
CFGBUD	federal government disposable budget
CFGb,r	federal government demand for commodities
CGBUDr	regional governments budget disposable for consumption
CGer	regional government demand for commodities
CH4EMISEN ${ }_{\text {enl }}^{\text {, }, \text { r }}$ r	CH 4 emissions by fuel sector and region ($\mathrm{Kt} \mathrm{CO2eq)}$
CH4EMISHDd,r	CH4 emissions generated by the households consumption of fuels, by decile (Kt CO2eq)
CH4EMISH	CH 4 emissions generated by the households consumption of fuels $(\mathrm{Kt}$ CO2eq)
CH4EMISNAT	national CH 4 emissions ($\mathrm{Kt} \mathrm{CO2eq)}$
CH4EMISNs	national CH4 emissions by sector (Kt CO2eq)
CH4EMISR	regional CH 4 emissions including households emissions (Kt CO2eq)
CH4EMISRS ${ }_{\text {r }}$	regional CH 4 emissions excluding households emissions ($\mathrm{Kt} \mathrm{CO2eq}$)
CH4EMIS ${ }_{\text {s, }}$	CH 4 emissions by sector and region ($\mathrm{Kt} \mathrm{CO2eq)}$
CH4PROC ${ }_{\text {s, }}$	CH 4 process emission factor expressed in $\mathrm{Kg} / \mathrm{GJ}$ by sector and region
CLES ${ }_{\text {d, }}$	households demand for leisure
CO2EMISEN ${ }_{\text {enl, }}$	CO 2 emissions by fuel sector and region (Kt)

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

CO2EMISHD ${ }_{\text {d,r }}$	CO 2 emissions generated by the households consumption of fuels by decile (Kt)
CO2EMISH ${ }_{\text {r }}$	CO2 emissions generated by the households consumption of fuels (Kt)
CO2EMISNAT	national CO 2 emissions (Kt)
CO2EMISNs	national CO 2 emissions by sector (Kt)
CO2EMISRr	regional CO 2 emissions including households emissions (Kt)
CO2EMISRSr	regional CO2 emissions excluding households emissions (Kt)
CO2EMIS ${ }_{\text {s,r }}$	CO 2 emissions by sector and region (Kt)
CO2PROC ${ }_{s, r}$	CO 2 process emissions (Kt)
CPI	consumer price index at the national level
$\mathrm{CSEARCH}_{\text {sbk,r}}$	labor search costs
DPmstar,	depreciation corresponding to the malleable capital
DPv $\mathrm{v}_{s, \mathrm{v}, \mathrm{r}}$	depreciation corresponding to the vintage capital
EMs,c,r,rr	export supply to the other Belgian regions by sector commodity region of origin and region of destination
$\mathrm{ENEFF}_{s, r}$	energy efficiency
ENERms,r	energy bundle demand by the CES sectors including electricity (corresponding to the output produced using malleable capital)
ENEROGmsc,r	energy bundle demand by the CES sectors excluding electricity (corresponding to the output produced using malleable capital)
ENEROGv $\mathrm{v}_{\mathrm{sc}, \mathrm{v}, \mathrm{r}}$	energy bundle demand by the CES sectors excluding electricity (corresponding to the output produced using rigid capital)
$\mathrm{ENER}_{s, \mathrm{r}}$	energy bundle demand by the sectors including electricity (corresponding to the output produced using malleable and rigid capital)
ENER $v_{s, v, r}$	energy bundle demand by the CES sectors including electricity (corresponding to the output produced using rigid capital)
ENINPen,sbk,r	energy inputs consumed by the CES and LEO sectors in the production process (corresponding to the composite output produced using malleable and rigid capital)
ENINPmen,sbk,r	energy inputs consumed by the CES and LEO sectors in the production process (corresponding to the output produced using malleable capital)
ENINPVen,sbb,v,r	energy inputs consumed by the CES and LEO sectors in the production process (corresponding to the output produced using rigid capital)
ER	exchange rate
$\mathrm{Es}, \mathrm{r}^{\text {r }}$	export supply to the ROW (Rest of the World) by region
$\mathrm{EV}_{\mathrm{d}, \mathrm{r}}$	equivalent variation in income
FFbk,r	demand for fixed factor by the backstop electricity sector by region
FFSr	supply of fixed factor by region
FKLObk,r	fixed factor-capital-labor-intermediate consumption bundle demand by the backstop electricity sector
GDP	gross domestic product at constant market prices
GDPC	gross domestic product at current market prices
GDPDEF	GDP deflator
$\mathrm{GDPR}_{\mathrm{r}}$	regional gross domestic product at constant market prices
$l_{\text {c,r }}$	demand for investment commodities by region (excluding vat and other taxes)
$I_{\text {NDEX }}$	regional consumer price index
INV ${ }_{\text {sbk,r }}$	investments carried out in the sectors
KEmsbk,r	capital-energy bundle demand by the CES sectors (corresponding to the output produced using malleable capital)
$K E v_{s, v, r}$	capital-energy bundle demand by the CES sectors (corresponding to the output produced using rigid capital)

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

KLEm ${ }_{\text {sc, }}$	capital-labor-energy bundle demand by the CES sectors (corresponding to the output produced using malleable capital)
$K_{\text {LEv }}^{\text {sc,v,r }}$,	capital-labor-energy bundle demand by the CES sectors (corresponding to the output produced using rigid capital)
KLm ${ }_{\text {sbk,r }}$	capital-labor bundle demand by the LEO sectors (corresponding to the output produced using malleable capital)
KLO ${ }_{\text {bk, }}$	capital-labor-intermediate consumption bundle demand by the backstop electricity sector
$K L v_{s, v, r}$	capital-labor bundle demand by the LEO sectors (corresponding to the output produced using rigid capital)
$\mathrm{KSKm}_{\text {sbk,r }}$	capital stock by sector and region (capital stock corresponding to the output produced using malleable capital)
$\mathrm{KSK}_{\text {sbk, }}$	capital stock by sector and region (capital stock corresponding to the composite output produced using malleable and rigid capital)
KSKTelr	total capital stock corresponding to the conventional and backstop electricity sectors
KSKTngr	total capital stock corresponding to the conventional and backstop natural gas sectors
KSK $v_{\text {sbk, } \mathrm{v}_{\text {r }} \text { r }}$	capital stock by sector and region (capital stock corresponding to the output produced using rigid capital)
Lmsbk,r	labor oultays by sector and region (corresponding to the output produced using malleable capital)
Ls,	labor oultays by sector and region (corresponding to the composite output produced using malleable and rigid capital)
LSN	national labor supply to domestic and non-residential firms
LSr	regional labor supply to domestic and non-residential firms
$L^{\text {SRD }}{ }_{\text {d, }}$	regional labor supply to domestic firms by decile
LSR ${ }_{\text {r }}$	regional labor supply to domestic firms
$\mathrm{LV}_{\mathrm{s}, \mathrm{v}, \mathrm{r}}$	labor oultays by sector and region (corresponding to the output produced using rigid capital)
LWr	labor supply to non-residential firms
MARKUPBbk,r	markup for the backstop sectors
MARKUP ${ }_{\text {s,c,r }}$	markup of imperfectly competitive sectors
Mc,	import demand from the RoW by commodity and region
$\mathrm{MCOSTS}_{s, r}$	marginal costs of oligopolistic sectors
MEs,c,r,rr	import demand from the other Belgian regions by sector commodity region of destination and region of origin
MU	dummy variable to be used for the decrease in the households income tax rate
MUF	dummy variable to be used for the decrease in the corporate income tax rate
MUFED	dummy variable to be used to fix the federal government disposable budget to the GDP ratio and compensate with a change in the federal government savings
N2OEMISEN ${ }_{\text {enl, }, \text { r }}$	N 2 O emissions by fuel sector and region (Kt CO2eq)
N2OEMISHD ${ }_{\text {d,r }}$	N 2 O emissions generated by the households consumption of fuels by decile (Kt CO2eq)
$\mathrm{N}^{\text {2OEMEMISHr}}$	N 2 O emissions generated by the households consumption of fuels (Kt CO2eq)
N2OEMISNAT	national N 2 O emissions (Kt CO 2 eq)
N2OEMISN ${ }_{\text {s }}$	national N 2 O emissions by sector (Kt CO2eq)
N2OEMISRr	regional N 2 O emissions including households emissions (Kt CO2eq)
N2OEMISRSr	regional N 2 O emissions excluding households emissions (Kt CO2eq)

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

N2OEMIS ${ }_{\text {s,r }}$	N 2 O emissions by sector and region ($\mathrm{Kt} \mathrm{CO2eq)}$
$\mathrm{N} 2 \mathrm{OPROC} \mathrm{s}, \mathrm{r}$	N 2 O process emission factor expressed in $\mathrm{Kg} / \mathrm{GJ}$ by sector and region
NF ${ }_{\text {s,r }}$	equilibrium number of imperfectly competitive firms by sector and region
NMr	number of job matches
NRES $_{\text {sbk,r }}$	natural resources used by the agricultural sector and the backstop electricity sectors
NRESS ${ }_{\text {r }}$	supply of natural resources
NV ${ }_{\text {sbk,r }}$	number of vacancies
$\mathrm{P}_{\mathrm{c}, \mathrm{r}}$	regional price level of domestic composite commodities from imports and domestic supply (net of taxes)
$\mathrm{PDD}_{s, \mathrm{c}, \mathrm{r}}$	producer price of domestic output supplied to domestic market, by sector, commodity and region
$\mathrm{PDE}_{s, c, r, r r}$	domestic price of exports to the other Belgian regions by sector, commodity, region of origin and region of destination
PDmas, ${ }_{\text {r }}$	price of output produced using malleable capital
PDMs, ${ }_{\text {s, }, \text { r,rr }}$	domestic price of imports from the other Belgian regions by sector, commodity, region of destination and region of origin
PDrig $_{s, r}$	price of output produced using rigid capital
PD ${ }_{s, r}$	price level of domestic output by sector and region (corresponding to the composite output produced using malleable and rigid capital)
$\mathrm{PDV}_{s, v, r}$	price of output produced using different vintages of capital
PENmsc,r	price of energy bundle (ENERm) including electricity (corresponding to the output produced using malleable capital)
PEN $v_{s c, v, r}$	price of energy bundle (ENERv) including electricity (corresponding to the output produced using rigid capital)
PEOGm ${ }_{\text {sc, }}$	price of energy bundle (ENEROGm) excluding electricity (corresponding to the composite output produced using malleable capital)
PEOG $v_{s c, v, r}$	price of energy bundle (ENEROGv) excluding electricity (corresponding to the composite output produced using rigid capital)
PE_{s}	domestic price of exports by sector
PFFr	price of fixed factor by region
PFKLO ${ }_{\text {bk, }}$	average return to fixed factor-capital-labor-intermediate consumption bundle (FKLO) in the backstop electricity sector
PI	price of the composite investment good
PKEm $_{\text {sbk,r }}$	price of capital-energy bundle (KEm) (corresponding to the output produced using malleable capital)
$\mathrm{PKE}_{\mathrm{v}, \mathrm{v}, \mathrm{r}}$	price of capital-energy bundle (KEv) (corresponding to the output produced using rigid capital)
PKLEm $_{\text {sc, r }}$	price of capital-labor-energy bundle (KLEm) (corresponding to the output produced using malleable capital)
PKLEv ${ }_{\text {sc, }, \text {, } \mathrm{r}}$	price of capital-labor-energy bundle (KLEv) (corresponding to the output produced using rigid capital)
PKLm ${ }_{\text {sbk,r }}$	price of capital-labor bundle (KLm) (corresponding to the output produced using malleable capital)
PKLObk,r	average return to capital-labor-intermediate consumption bundle (KLO) in the backstop electricity sector
PKLv ${ }_{s, v, r}$	price of capital-labor bundle (KLv) (corresponding to the output produced using rigid capital)
PLES ${ }_{\text {d, }}$ r	aggregate price level in the "proposed change" used in the derivation of equivalent variation in income
PLsbk,r	average wage rate by sector and region
PLU ${ }_{\text {sbk, }}$	reservation wage

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

PM ${ }_{\text {c,r }}$	domestic price of imports (including tariffs) by commodity and region
PNRES ${ }_{\text {r }}$	average return to natural resources
ProdCET ${ }_{\text {s,r }}$	increase in exports productivity
ProdEN_VAs,r	increase in the energy efficiency due to voluntary agreements
ProdEN ${ }_{s, r}$	increase in the energy efficiency by sector and region
PROFITS ${ }_{s, r}$	oligopolistic profits by sector and region
PRr	probability to find a job
PWEs	world price of exports
PWMc	world price of imports
PWr	regional wage rate
QR ${ }_{r}$	probability to fill in a vacancy
RATIO	federal government disposable budget to GDP ratio
RGD	nominal interest rate (average return to capital)
RKelr	average return to capital in the production of backstop and conventional electricity
RKm ${ }_{\text {sbk, }}$	return to capital corresponding to the malleable capital
RKngr	average return to capital in the production of backstop and conventional natural gas
RK $v_{s, v, r}$	return to capital corresponding to the vintage capital
S	national savings
SFGT	federal government savings
SF_{r}	firms savings by region
SGr	regional governments savings
SH ${ }_{\text {d,r }}$	household savings by decile and region
SId, ${ }_{\text {r }}$	supernumerary income in the "proposed change" used in the derivation of equivalent variation in income
SV ${ }_{c, r}$	demand for inventories by commodity and region
SWT	foreign savings
TAXRF	federal government tax revenues
TAXR ${ }_{r}$	regional governments tax revenues
TFP ${ }_{\text {sbk,r }}$	total factor productivity
TRFCFG	transfers received by the french community from the federal government
TRFGFr	transfers received by the federal government from the firms
TRFW ${ }_{\text {r }}$	transfers from the firms to the ROW
TRGFCr	transfers received by the regional government (Wallonia) from the French community
TRGFGr	transfers received by the regional governments from the federal government
TRHFF,r	transfers received by the households from the firms
TRHFGd,r	total transfers received by the households from the federal government by decile and region
TRHGd, ${ }_{\text {r }}$	total transfers received by the households from the regional governments by decile
TRHW ${ }_{\text {d,r }}$	transfers received by the households from the ROW by decile and region
TROd, ${ }_{\text {d }}$	other transfers received by the households from the federal government by decile and region
TRWGr	transfers of the regional governments to the ROW
TSD ${ }_{\text {d, }}$	regional time endowment by decile
UNEMPr	regional unemployment
UNRATEN	national unemployment rate
UNRATEr	regional unemployment rate
VLES ${ }_{\text {d, }}$	households indirect utility function in the "proposed change"
Xc,r	regional domestic sales from domestic supply and imports

XDD $_{s, v, r}$	domestic output supplied to domestic market by sector, commodity and region
XDmELbkk,r $^{\text {production of backstop electricity }}$	
XDm $_{s b k, r}$	domestic output (gross output produced using malleable capital) domestic output (gross output produced using total rigid capital)
XDrig $_{s, r}$	regional domestic output (composite gross output produced using malleable
XD $_{s, r}$	and rigid capital)
XDv $_{s b k, v, r}$	domestic output (gross output produced using different vintages of capital) household income by decile and region

Name of the parameters:

$\mathrm{aA}_{\mathrm{c}, \text {, }}$	efficiency parameter (in the ARMINGTON function)
hd,r	share of capital income received by the households, by decile and regio
$l_{\text {d, }}$	share of rents on natural resources received by the households
ailh d, r, r	share of labor income received by the households from the region of residence or other Belgian region, by decile
aKLEms,r	efficiency parameter in the Leontief production function (first nest) for the CES sectors (corresponding to the output produced using malleable capital)
$\mathrm{aKLEv}_{s, v, r}$	efficiency parameter in the Leontief production function (first nest) for the CES sectors (corresponding to the output produced using vintage capital)
aLm2en,sbk,r	technical coefficients corresponding to different energy inputs (ENINPm) in the Leontief production function for the LEO sectors (first nest) (corresponding to the output produced using malleable capital)
aLm 3 sbk, ${ }^{\text {r }}$	efficiency parameter in the CES production function (second nest) for the LEO sectors (corresponding to the output produced using malleable capital)
aLmTs,r	sum of the technical coefficients corresponding to the capital-energy bundle (KLm),energy inputs (ENINPm) and other non-energy inputs in the Leontief production function for the LEO sectors (first nest) (corresponding to the output produced using malleable capital)
aLv1 ${ }_{\text {sbk, }, \text {, }}$	technical coefficient corresponding to the capital-energy bundle (KLv) in the Leontief production function for the LEO sectors (first nest) (corresponding to the output produced using vintage capital)
aLv2en,sb, , , ,	technical coefficients corresponding to different energy inputs (ENINPv) in the Leontief production function for the LEO sectors (first nest) (corresponding to the output produced using vintage capital)
aLv3s,v,	efficiency parameter in the CES production function (second nest) for the LEO sectors (corresponding to the output produced using vintage capital)
aM	scale parameter of the matching function
aNRES stb,r $^{\text {r }}$	technical coefficient corresponding to natural resources
$\mathrm{aO} 1_{\text {s, }}$	efficiency parameter in the CES function used to aggregate the output produced using malleable capital and the total output produced using rigid capital
$\mathrm{aO} 2{ }_{\mathrm{s}, \mathrm{r}}$	efficiency parameter in the CES function used to aggregate the output produced using different vintages of capital in the total output produced using rigid capital
aPm1 ${ }_{\text {s, }}$	efficiency parameter in CES production function (second nest) for the CES sectors (corresponding to the output produced using malleable capital)
aPm $2_{\text {sbk, }}$	efficiency parameter in CES production function (third nest) for the CES sectors (corresponding to the output produced using malleable capital)

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

aPm3nels,r	efficiency parameter in the Leontief production function (fourth nest) corresponding to the non-electric energy bundle for the cesnel sectors (corresponding to the output produced using malleable capital)
aPm3s,r	efficiency parameter in CES production function (fourth nest) for the CES sectors (corresponding to the output produced using malleable capital)
aPm4s,r	efficiency parameter in CES production function (fifth nest) for the CES sectors (corresponding to the output produced using malleable capital)
$\mathrm{aPv} 1_{\mathrm{s}, \mathrm{v}, \mathrm{r}}$	efficiency parameter in CES production function (second nest) for the CES sectors (corresponding to the output produced using vintage capital)
$\mathrm{aPv} 2_{s, v, r}$	efficiency parameter in CES production function (third nest) for the CES sectors (corresponding to the output produced using vintage capital)
aPv3nel ${ }_{s, v, r}$	efficiency parameter in the Leontief production function (fourth nest) corresponding to the non-electric energy bundle for the cesnel sectors (corresponding to the output produced using vintage capital)
$\mathrm{aPv} 3_{s, \mathrm{v}, \mathrm{r}}$	efficiency parameter in CES production function (fourth nest) for the CES sectors (corresponding to the output produced using vintage capital)
$a P \vee 4_{s, v, r}$	efficiency parameter in CES production function (fifth nest) for the CES sectors (corresponding to the output produced using vintage capital)
a	efficiency parameter (in the CET function)
betar	value of wage curve parameter, by region
CH4GJ	CH 4 emission factor expressed in $\mathrm{Kg} / \mathrm{GJ}$ by fuel, sector and region
CH4GJ	households CH 4 emission factor expressed in $\mathrm{Kg} / \mathrm{GJ}$ by fuel and region
CH4GJPROC ${ }_{s, r}$	CH 4 process emission factor expressed in $\mathrm{Kg} / \mathrm{GJ}$ by sector and region
CH4SCALHD ${ }_{\text {d, }}$	scaling factor for households CH 4 emissions by decile and region (derived using 2003 as the base year)
CH 4 SCALH r	scaling factor for households CH4 emissions by region (derived using 2003 as the base year)
CH 4 SCAL s, ${ }_{\text {r }}$	scaling factor for CH 4 emissions by sector and region (derived using 2003 as the base year)
CO2GJen, ${ }^{\text {r }}$	CO 2 emission factor expressed in $\mathrm{Kg} / \mathrm{GJ}$
CO2GJPROC ${ }_{s, r}$	CO 2 process emission factor expressed in $\mathrm{Kg} / \mathrm{GJ}$ by sector and region
CO2SCALHD ${ }_{\text {d,r }}$	scaling factor for households CO2 emissions by decile and region (derived using 2003 as the base year)
$\mathrm{CO}_{2} \mathrm{SCALH}_{\mathrm{r}}$	scaling factor for households CO2 emissions by region (derived using 2003 as the base year)
CO2SCALs,r	scaling factor for CO2 emissions by sector and region (derived using 2003 as the base year)
	depreciation rate,
	demand elasticity for imperfectly competitive sectors, by region
elasY_LS	income elasticity of labor supply, by region
elas $\mathrm{Y}_{\text {c,r }}$	income elasticities of demand for commodities by region
elas Yd ${ }_{\text {c, }{ }_{\text {, }} \text { r }}$	income elasticities of demand for commodities by decile and region
errr	error term in the wage curve regression
$\mathrm{fcKm}_{s, r}$	capital fixed costs corresponding to the output produced using malleable capital
$\mathrm{fcKmZ}_{s, r}$	capital fixed costs corresponding to the output produced using malleable capital - benchmark value
fcK	total capital fixed costs
$\mathrm{fcKk}_{s, v, \mathrm{r}}$	capital fixed costs corresponding to the output produced using vintage capital
$\mathrm{fcKv}^{\text {c }} \mathrm{S}_{\mathrm{s}, \mathrm{v}, \mathrm{r}}$	capital fixed costs corresponding to the output produced using vintage capital - benchmark value

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

fcLms,	labor fixed costs corresponding to the output produced us capital
$\mathrm{fcLm}_{\mathrm{S}, \mathrm{r}}$	labor fixed costs corresponding to the output produced using malleable capital - benchmark value
fcLs,	total labor fixed costs
fclvs,	labor fixed costs corresponding to the output produced using vintage capital
$\mathrm{fcLv}^{\text {s, }, \text {, }}$	labor fixed costs corresponding to the output produced using vintage capital benchmark value
$\mathrm{fcReg}_{s, r}$	share of fixed costs in total costs for imperfectly competitive sectors, by region
frisch	value of Frisch parameter in the nested-LES utility function, by region
GJOULEenls,r	ratio between consumption of energy inputs by sector and region, expressed in GJ and the consumption of energy inputs by sector and region, expressed in bil EUR
GJOULEHDenld, r	ratio between households consumption of energy inputs by decile, expressed in GJ and households consumption of energy inputs by decile, expressed in billions EUR
GJOULEH ${ }_{\text {enl, }}$	ratio between households consumption of energy inputs, expressed in GJ and households consumption of energy inputs expressed in billions EUR
growth	growth rate at the national level (weighted average)
growthzr	regional growth rates
ioc,	technical coefficients by commodity, sector and region
Idecr	labor income received by all households groups from the region of residence
$\mathrm{LDZ}_{\text {s, }}$	last year labor demand
LmDZbk, markupBKbk,r	last year labor demand for the backstop sectors markup for the backstop technologies above the base-year cost of the fuel for which they are perfect substitute
mpsd,	average propensity to save by region
N2OGJen,s,r	N 2 O emission factor expressed in $\mathrm{Kg} / \mathrm{GJ}$ by fuel, sector and region
N2OGJ ${ }_{\text {en,r }}$	households N 2 O emission factor expressed in $\mathrm{Kg} / \mathrm{GJ}$ by fuel and region
N2OGJPROCs,	N 2 O process emission factor expressed in $\mathrm{Kg} / \mathrm{GJ}$ by sector and region
N2OSCALHD ${ }_{\text {d, }}$	scaling factor for households N2O emissions by decile and region (derived using 2003 as the base year)
N2OSCALH	scaling factor for households N2O emissions by region (derived using 2003 as the base year)
N2OSCALs,	scaling factor for N2O emissions by sector and region (derived using 2003 as the base year)
phisbk,	share of malleable capital that becomes rigid at the end of each period
PLESZ ${ }_{\text {d, }}$	aggregate price level in the "benchmark equilibrium", used in the derivation of equivalent variation in income
PLWZ	average wage rate paid by the non-residential firms
PROFITSDZ $_{\text {s,r }}$	dditional parameter for profits
$\Phi_{s, r}$ scal $_{\text {sbk, }}$	share of malleable capital that becomes rigid ta the end of each period bargaining power of workers by sector and region
shFlBx	e of commuters from Flanders to Bruxelles
shFlBxDd	are of commuters from Flanders to Brussels, by decile
shldecd, ${ }^{\text {r }}$	share of labor income received by each decile from the region of residence in the total labor income received by all households groups from the region of residence
$\mathrm{b}_{\mathrm{d}, \mathrm{r}}$	bution
stwBx	are of commuters from Wallonia to Bruxelles
shWBxDd	share of commuters from Wallonia to Brussels, by decile

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

WF	share of commuters from Wallonia to Flanders
shWFID ${ }_{\text {d }}$	share of commuters from Wallonia to Flanders, by decile
SIZ $\mathrm{Z}_{\text {, }}$	supernumerary income in the "benchmark equilibrium", used in the derivation of equivalent variation in income
svrc, ${ }_{\text {r }}$	inventory investment ratio, by commodity and region
tc0 0 c, dr	effective tax rate on private consumption (other taxes on consumption paid to the regional government) by commodity, decile and region (benchmark value to be used in the derivation of the consumer price index)
c, , , r	effective tax rate on private consumption (other taxes on consumption paid to the regional government) by commodity, decile and region
tcf0 $\mathrm{c}_{\text {d, }, \text { r }}$	effective tax rate on private consumption (other taxes on consumption paid to the federal government) by commodity, decile and region (benchmark value to be used in the derivation of the consumer price index)
tcffc, ${ }_{\text {, }}$	effective tax rate on private consumption (other taxes on consumption paid to the federal government) by commodity, decile and region
tci0c, ${ }_{\text {c }}$	effective tax rate on investment goods (other taxes on investment goods paid to the federal government) by commodity and region - benchmark value
tcic,	effective tax rate on investment goods (other taxes on investment goods paid to the federal government) by commodity and region
$\mathrm{tk}_{\mathrm{s}, \mathrm{r}}$	effective tax rate on capital use (other taxes on capital use paid to the regional government) by sector and region - benchmark value
tkfostk,r	effective corporate tax rate (corporate taxes paid to the federal government) by sector and region benchmark value
tkfstb,r	effective corporate tax rate (corporate taxes paid to the federal government) by sector and region
tkssk,r	effective tax rate on capital use (other taxes on capital use paid to the regional government) by sector and region
tlssk,r	social security contributions rate (social security contributions paid to the federal government) by sector and region
tm $\mathrm{c}_{\text {r }}$	effective tariff rate on imports (tariffs paid to the federal government) by commodity and region
tpf $_{5, r}$	effective tax rate on production (taxes on production paid to the federal government) by sector and region
tps,	effective tax rate on production (taxes on production paid to the regional governments) by sector and region
trep $_{\mathrm{r}}$ $\mathrm{tsc}_{\mathrm{c}, \mathrm{~d}, \mathrm{r}}$	replacement rate by region effective subsidy rate on private consumption (subsidies on private consumption paid by the regional governments) by commodity, decile and region (benchmark value to be used in the derivation of the consumer price index)
tsC $\mathrm{c}, \mathrm{d}, \mathrm{r}$	effective subsidy rate on private consumption (subsidies on private consumption paid by the regional governments) by commodity, decile and region
tscf0c, ${ }_{\text {, }, \text { r }}$	effective subsidy rate on private consumption (subsidies on private consumption paid by the federal government) by commodity, decile and region (benchmark value to be used in the derivation of the consumer price index)
tscff, d,	effective subsidy rate on private consumption (subsidies on private consumption paid by the federal government) by commodity, decile and region
tscioc, ${ }_{\text {, }, \text {, }}$	effective subsidy rate on intermediate consumption (subsidies paid by the regional governments)

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »
$\left.\begin{array}{ll}\text { tsciof } \mathrm{c}_{\mathrm{c}, \mathrm{r}} & \begin{array}{l}\text { effective subsidy rate on intermediate consumption (subsidies paid by the } \\ \text { federal government) } \\ \text { effective subsidy rate on production (subsidies on production paid by the } \\ \text { federal government) by sector and region }\end{array} \\ \text { tsp,r } \\ \text { effective subsidy rate on production (subsidies on production paid by the } \\ \text { regional governments) by sector and region }\end{array}\right]$

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

γ BKel32 skb,r	CES distribution parameter for labor in the production of backstop electricity (third nest)
γ BKng1r	CES distribution parameter for labor in the production of backstop natural gas
γ BKng2r	distribution parameter for capital in the production of backstop natural gas
$\gamma \mathrm{Lm} 11_{\text {stb, }, ~}$	CES distribution parameter for capital - KSKm (second nest) for the LEO sectors (corresponding to the output produced using malleable capital)
$\gamma \mathrm{Lm} 12 \mathrm{sck}, \mathrm{r}$	CES distribution parameter for labor - Lm (second nest) for the LEO sectors (corresponding to the output produced using malleable capital)
$\gamma \mathrm{Lv} 11_{s, v, r}$	CES distribution parameter for capital - KSKv (second nest) for the LEO sectors (corresponding to the output produced using vintage capital)
$\gamma \mathrm{Lv} 12_{\text {s, }{ }_{\text {, }}}$	CES distribution parameter for labor - Lv (second nest) for the LEO sectors (corresponding to the output produced using vintage capital)
$\gamma \mathrm{O}$	CES distribution parameter for the output produced using malleable capital
$\gamma \mathrm{O} 12 \mathrm{s,r}$	CES distribution parameter for the total output produced using rigid capital
$\gamma \mathrm{O} 2_{s, v, r}$	CES distribution parameter for the output produced using different vintages of capital
$\gamma \mathrm{Pm} 11_{\text {sc, }}$	CES distribution parameter for capital-energy bundle - Kem (second nest) for the CES sectors (corresponding to the output produced using malleable capital)
$\gamma \mathrm{Pm} 12 \mathrm{sc,r}$	CES distribution parameter for labor - Lm (second nest) for the CES sectors (corresponding to the output produced using malleable capital)
$\gamma \mathrm{Pm} 21$ stb, r	CES distribution parameter for capital - KSKm (third nest) for the CES sectors (corresponding to the output produced using malleable capital)
$\gamma \mathrm{Pm} 22$ sts, r	CES distribution parameter for energy composite, including electricity ENERm (third nest) for the CES sectors (corresponding to the output produced using malleable capital)
$\gamma \mathrm{Pm} 31_{\mathrm{sc}, \mathrm{r}}$	CES distribution parameter for energy composite, excluding electricity ENEROGm (fourth nest) for the CES sectors (corresponding to the output produced using malleable capital)
$\gamma \mathrm{Pm} 32 \mathrm{el}, \mathrm{sc,r}$	CES distribution parameter for electricity (fourth nest) for the CES sectors (corresponding to the output produced using malleable capital)
γ Pm4en,, r	CES distribution parameter for different non-electric energy inputs - ENINPm (fifth nest) for the CES sectors (corresponding to the output produced using malleable capital)
$\gamma \mathrm{Pv} 11_{\text {sc, , , }}$	CES distribution parameter for capital-energy bundle - KEv (second nest) for the CES sectors (corresponding to the output produced using vintage capital)
$\gamma \mathrm{Pv} 12{ }_{\text {sc, }, \text { r }}$	CES distribution parameter for labor - Lv (second nest) for the CES sectors (corresponding to the output produced using vintage capital)
$\gamma \mathrm{Pv} 21_{s, v, r}$	CES distribution parameter for capital - KSKv (third nest) for the CES sectors (corresponding to the output produced using vintage capital)
$\gamma \mathrm{Pv} 22_{s, v, r}$	CES distribution parameter for energy composite, including electricity ENERv (third nest) for the CES sectors (corresponding to the output produced using vintage capital)
$\gamma \mathrm{Pv} 31_{\text {sc, , , }}$	CES distribution parameter for energy composite, excluding electricity ENEROGv (fourth nest) for the CES sectors (corresponding to the output produced using vintage capital)
$\gamma \mathrm{Pv} 32 \mathrm{el,s,c,r,r}$	CES distribution parameter for electricity (fourth nest) for the CES sectors (corresponding to the output produced using vintage capital)
$\gamma \mathrm{Pv} 4 \mathrm{en}_{\text {n, }, \mathrm{v}, \mathrm{r}}$	CES distribution parameter for different non-electric energy inputs - ENINPV (fifth nest) for the CES sectors (corresponding to the output produced using vintage capital)
$\gamma 1_{\text {s, }, ~}$	CET distribution parameter for exports to the ROW (in the CET function)

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

$\gamma \mathrm{T} 2_{s, c, r}$	CET distribution parameter for exports to one of the Belgian regions (in the CET function)
$\gamma \mathrm{T} 3_{s, c, r}$	CET distribution parameter for exports to the other Belgian region (in the CET function)
$\gamma \mathrm{T} 4_{s, c, r}$	CET distribution parameter for the supply of the domestic producers to the domestic regional market (in the CET function)
$\mu \mathrm{H}_{\mathrm{c}, \mathrm{d}, \mathrm{r}}$	household subsistence consumption of commodities household subsistence consumption of leisure elasticity of substitution between imports from the ROW, imports from the other Belgian regions and domestic production supplied to the domestic regional markets (in the ARMINGTON function) CES elasticity of substitution between natural resources and fixed factor-
$\sigma \mathrm{A}_{\mathrm{c}, r}$	

Project CP/51 - «GreenMod II: Dynamic Regional and Global Multi-Sectoral Modelling of the Belgian Economy for Impact, Scenario and Equity Analysis »

$\sigma P v 3_{s, v, r} \quad$| CES elasticity of substitution between electricity and non-electric energy |
| :--- |
| inputs (fourth nest) for the CES sectors (corresponding to the output produced |
| using vintage capital) |

Name of the indexes:

agr	agricultural sectors
b	Brussels
bk	backstop sectors
bkel	backstop electricity
bkng	backstop natural gas
c	commodities
cc	same as c (used for simplifying the notations)
co	coal (energy input)
d	deciles
el	electricity (energy input)
en	energy inputs
enl	energy inputs except electricity
enlg	energy inputs except natural gas and electricity
f	Flanders
r	regions
rr	used for one of the three Belgian regions (other than r)
rrr	used for one of the three Belgian regions (other than r and $r r$)
s	production sectors excluding the backstop sectors
sbk	production sectors including the backstop sectors
sc	production sectors with a nested production structure (CES group)
scl	production and distribution of non-nuclear electricity and air transport sectors
scnel	production sectors with a nested production structure (CES group) excluding production and distribution of non-nuclear electricity
scnl	production sectors with a nested production structure (CES group) excluding production and distribution of non-nuclear electricity and air transport sectors
sel	production and distribution of non-nuclear electricity sector
sl	production sectors with a nested production structure (LEO group)
slnng	production sectors with a nested production structure (LEO group) excluding production and distribution of natural gas sector
smon	monopolistically competitive sectors
sng	production and distribution of natural gas sector
solig	oligopolistic production sectors
v	vintages of capital
w	Wallonia

